scholarly journals Age- and reserve-related increases in fronto-parietal and anterior hippocampal activity during episodic encoding predict subsequent memory

2019 ◽  
Author(s):  
Abdelhalim Elshiekh ◽  
Sivaniya Subramaniapillai ◽  
Sricharana Rajagopal ◽  
Stamatoula Pasvanis ◽  
Elizabeth Ankudowich ◽  
...  

AbstractRemembering associations between encoded items and their contextual setting is a feature of episodic memory. Although this ability deteriorates with age in general, there is substantial variability in how older individuals perform on episodic memory tasks. This variability may stem from genetic and/or environmental factors related to reserve, allowing some individuals to compensate for age-related decline through differential recruitment of brain regions. In this fMRI study, we tested predictions related to reserve and compensation in a large adult lifespan sample (N=154). We used multivariate Behaviour Partial Least Squares (B-PLS) analysis to examine how age, retrieval accuracy, and a proxy measure of reserve, impacted brain activity patterns during spatial and temporal context encoding and retrieval. Reserve modulated age-related compensatory brain responses in ventral visual, temporal, and fronto-parietal regions during memory encoding as a function of task demands. Activity in inferior parietal, medial temporal, and ventral visual regions were strongly impacted by age at encoding and retrieval, but were also related to individual differences in reserve. Our findings are consistent with the concepts of reserve and compensation and suggest that reserve may mitigate age-related decline by modulating compensatory brain responses in the aging brain.

2000 ◽  
Vol 12 (1) ◽  
pp. 163-173 ◽  
Author(s):  
Lars Nyberg ◽  
Jonas Persson ◽  
Reza Habib ◽  
Endel Tulving ◽  
Anthony R. McIntosh ◽  
...  

Large-scale networks of brain regions are believed to mediate cognitive processes, including episodic memory. Analyses of regional differences in brain activity, measured by functional neuroimaging, have begun to identify putative components of these networks. To more fully characterize neurocognitive networks, however, it is necessary to use analytical methods that quantify neural network interactions. Here, we used positron emission tomography (PET) to measure brain activity during initial encoding and subsequent recognition of sentences and pictures. For each type of material, three recognition conditions were included which varied with respect to target density (0%, 50%, 100%). Analysis of large-scale activity patterns identified a collection of foci whose activity distinguished the processing of sentences vs. pictures. A second pattern, which showed strong prefrontal cortex involvement, distinguished the type of cognitive process (encoding or retrieval). For both pictures and sentences, the manipulation of target density was associated with minor activation changes. Instead, it was found to relate to systematic changes of functional connections between material-specific regions and several other brain regions, including medial temporal, right prefrontal and parietal regions. These findings provide evidence for large-scale neural interactions between material-specific and process-specific neural substrates of episodic encoding and retrieval.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2021 ◽  
Author(s):  
Adeline Jabès ◽  
Giuliana Klencklen ◽  
Paolo Ruggeri ◽  
Christoph M. Michel ◽  
Pamela Banta Lavenex ◽  
...  

AbstractAlterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory performance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity requires further investigation.


2021 ◽  
Vol 11 (7) ◽  
pp. 885
Author(s):  
Maher Abujelala ◽  
Rohith Karthikeyan ◽  
Oshin Tyagi ◽  
Jing Du ◽  
Ranjana K. Mehta

The nature of firefighters` duties requires them to work for long periods under unfavorable conditions. To perform their jobs effectively, they are required to endure long hours of extensive, stressful training. Creating such training environments is very expensive and it is difficult to guarantee trainees’ safety. In this study, firefighters are trained in a virtual environment that includes virtual perturbations such as fires, alarms, and smoke. The objective of this paper is to use machine learning methods to discern encoding and retrieval states in firefighters during a visuospatial episodic memory task and explore which regions of the brain provide suitable signals to solve this classification problem. Our results show that the Random Forest algorithm could be used to distinguish between information encoding and retrieval using features extracted from fNIRS data. Our algorithm achieved an F-1 score of 0.844 and an accuracy of 79.10% if the training and testing data are obtained at similar environmental conditions. However, the algorithm’s performance dropped to an F-1 score of 0.723 and accuracy of 60.61% when evaluated on data collected under different environmental conditions than the training data. We also found that if the training and evaluation data were recorded under the same environmental conditions, the RPM, LDLPFC, RDLPFC were the most relevant brain regions under non-stressful, stressful, and a mix of stressful and non-stressful conditions, respectively.


2018 ◽  
Author(s):  
Christiane Oedekoven ◽  
James L. Keidel ◽  
Stuart Anderson ◽  
Angus Nisbet ◽  
Chris Bird

Despite their severely impaired episodic memory, individuals with amnesia are able to comprehend ongoing events. Online representations of a current event are thought to be supported by a network of regions centred on the posterior midline cortex (PMC). By contrast, episodic memory is widely believed to be supported by interactions between the hippocampus and these cortical regions. In this MRI study, we investigated the encoding and retrieval of lifelike events (video clips) in a patient with severe amnesia likely resulting from a stroke to the right thalamus, and a group of 20 age-matched controls. Structural MRI revealed grey matter reductions in left hippocampus and left thalamus in comparison to controls. We first characterised the regions activated in the controls while they watched and retrieved the videos. There were no differences in activation between the patient and controls in any of the regions. We then identified a widespread network of brain regions, including the hippocampus, that were functionally connected with the PMC in controls. However, in the patient there was a specific reduction in functional connectivity between the PMC and a region of left hippocampus when both watching and attempting to retrieve the videos. A follow up analysis revealed that in controls the functional connectivity between these regions when watching the videos was correlated with memory performance. Taken together, these findings support the view that the interactions between the PMC and the hippocampus enable the encoding and retrieval of multimodal representations of the contents of an event.


Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


Author(s):  
Lisa Yang ◽  
Lysia Demetriou ◽  
Matthew B Wall ◽  
Edouard G Mills ◽  
Victoria C Wing ◽  
...  

Abstract Context The hormone kisspeptin has crucial and well-characterized roles in reproduction. Emerging data from animal models also suggest that kisspeptin has important metabolic effects including modulation of food intake. However, to date there have been no studies exploring the effects of kisspeptin on brain responses to food stimuli in humans. Objective This work aims to investigate the effects of kisspeptin administration on brain responses to visual food stimuli and psychometric parameters of appetite, in healthy men. Design A double-blinded, randomized, placebo-controlled, crossover study was conducted. Participants Participants included 27 healthy, right-handed, eugonadal men (mean ± SEM: age 26.5 ± 1.1 years; body mass index 23.9 ± 0.4 kg/m2). Intervention Participants received an intravenous infusion of 1 nmol/kg/h of kisspeptin or rate-matched vehicle over 75 minutes. Main Outcome Measures Measurements included change in brain activity on functional magnetic resonance imaging in response to visual food stimuli and change in psychometric parameters of appetite, during kisspeptin administration compared to vehicle. Results Kisspeptin administration at a bioactive dose did not affect brain responses to visual food stimuli or psychometric parameters of appetite compared to vehicle. Conclusions This is the first study in humans investigating the effects of kisspeptin on brain regions regulating appetite and demonstrates that peripheral administration of kisspeptin does not alter brain responses to visual food stimuli or psychometric parameters of appetite in healthy men. These data provide key translational insights to further our understanding of the interaction between reproduction and metabolism.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
María Paternina-Die ◽  
Magdalena Martínez-García ◽  
Clara Pretus ◽  
Elseline Hoekzema ◽  
Erika Barba-Müller ◽  
...  

Abstract The transition into fatherhood is a life-changing event that requires substantial psychological adaptations. In families that include a father figure, sensitive paternal behavior has been shown to positively impact the infant’s development. Yet, studies exploring the neuroanatomic adaptations of men in their transition into fatherhood are scarce. The present study used surface-based methods to reanalyze a previously published prospective magnetic resonance imaging dataset comprised of 20 first-time fathers (preconception-to-postpartum) and 17 childless men. We tested if the transition into fatherhood entailed changes in cortical volume, thickness, and area and whether these changes were related to 2 indicators of paternal experience. Specifically, we tested if such changes were associated with (1) the baby’s age and/or (2) the fathers’ brain activity in response to pictures of their babies compared with an unknown baby. Results indicated that first-time fathers exhibited a significant reduction in cortical volume and thickness of the precuneus. Moreover, higher volume reduction and cortical thinning were associated with stronger brain responses to pictures of their own baby in parental brain regions. This is the first study showing preconception-to-postpartum neuroanatomical adaptations in first-time fathers associated with the father’s brain response to cues of his infant.


2013 ◽  
Vol 25 (2) ◽  
pp. 219-233 ◽  
Author(s):  
Emilie T. Reas ◽  
James B. Brewer

Neuroimaging studies of episodic memory retrieval have revealed activations in the human frontal, parietal, and medial-temporal lobes that are associated with memory strength. However, it remains unclear whether these brain responses are veritable signals of memory strength or are instead regulated by concomitant subcomponents of retrieval such as retrieval effort or mental search. This study used event-related fMRI during cued recall of previously memorized word-pair associates to dissociate brain responses modulated by memory search from those modulated by the strength of a recalled memory. Search-related deactivations, dissociated from activity due to memory strength, were observed in regions of the default network, whereas distinctly strength-dependent activations were present in superior and inferior parietal and dorsolateral PFC. Both search and strength regulated activity in dorsal anterior cingulate and anterior insula. These findings suggest that, although highly correlated and partially subserved by overlapping cognitive control mechanisms, search and memory strength engage dissociable regions of frontoparietal attention and default networks.


2019 ◽  
Vol 74 (7) ◽  
pp. 1086-1100 ◽  
Author(s):  
Marie St-Laurent ◽  
Bradley R Buchsbaum

Abstract Objectives Aging can reduce the specificity with which memory episodes are represented as distributed patterns of brain activity. It remains unclear, however, whether repeated encoding and retrieval of stimuli modulate this decline. Memory repetition is thought to promote semanticization, a transformative process during which episodic memory becomes gradually decontextualized and abstracted. Because semantic memory is considered more resilient to aging than context-rich episodic memory, we hypothesized that repeated retrieval would affect cortical reinstatement differently in young versus older adults. Methods We reanalyzed data from young and older adults undergoing functional magnetic resonance imaging while repeatedly viewing and recalling short videos. We derived trial-unique multivariate measures of similarity between video-specific brain activity patterns elicited at perception and at recall, which we compared between age groups at each repetition. Results With repetition, memory representation became gradually more distinct from perception in young adults, as reinstatement specificity converged downward toward levels observed in the older group. In older adults, alternative representations that were item-specific but orthogonal to patterns elicited at perception became more salient with repetition. Discussion Repetition transformed dominant patterns of memory representation away and orthogonally from perception in young and older adults, respectively. Although distinct, both changes are consistent with repetition-induced semanticization.


Sign in / Sign up

Export Citation Format

Share Document