scholarly journals Brain Activity-Based Metrics for Assessing Learning States in VR under Stress among Firefighters: An Explorative Machine Learning Approach in Neuroergonomics

2021 ◽  
Vol 11 (7) ◽  
pp. 885
Author(s):  
Maher Abujelala ◽  
Rohith Karthikeyan ◽  
Oshin Tyagi ◽  
Jing Du ◽  
Ranjana K. Mehta

The nature of firefighters` duties requires them to work for long periods under unfavorable conditions. To perform their jobs effectively, they are required to endure long hours of extensive, stressful training. Creating such training environments is very expensive and it is difficult to guarantee trainees’ safety. In this study, firefighters are trained in a virtual environment that includes virtual perturbations such as fires, alarms, and smoke. The objective of this paper is to use machine learning methods to discern encoding and retrieval states in firefighters during a visuospatial episodic memory task and explore which regions of the brain provide suitable signals to solve this classification problem. Our results show that the Random Forest algorithm could be used to distinguish between information encoding and retrieval using features extracted from fNIRS data. Our algorithm achieved an F-1 score of 0.844 and an accuracy of 79.10% if the training and testing data are obtained at similar environmental conditions. However, the algorithm’s performance dropped to an F-1 score of 0.723 and accuracy of 60.61% when evaluated on data collected under different environmental conditions than the training data. We also found that if the training and evaluation data were recorded under the same environmental conditions, the RPM, LDLPFC, RDLPFC were the most relevant brain regions under non-stressful, stressful, and a mix of stressful and non-stressful conditions, respectively.

Author(s):  
Maryam Daniali ◽  
Dario D. Salvucci ◽  
Maria T. Schultheis

Concussions are common cognitive impairments, but their effects on task performance in general, and on driving in particular, are not well understood. To better understand the effects of concussion on driving, we investigated previously gathered data on twenty-two people with a concussion, driving in a virtual-reality driving simulator (VRDS), and twenty-two non-concussed matched drivers. Participants were asked to per-form a behavioral task (either coin sorting or a verbal memory task) while driving. In this study, we chose a few common metrics from the VRDS and tracked their changes through time for each participant. Our pro-posed method—namely, the use of convolutional neural networks for classification and analysis—can accu-rately classify concussed driving and extract local features on driving sequences that translate to behavioral driving signatures. Overall, our method improves identification and understanding of clinically relevant driv-ing behaviors for concussed individuals and should generalize well to other types of impairments.


Neuroscience ◽  
2020 ◽  
Vol 436 ◽  
pp. 170-183 ◽  
Author(s):  
Zhi-yao Tian ◽  
Long Qian ◽  
Lei Fang ◽  
Xue-hua Peng ◽  
Xiao-hu Zhu ◽  
...  

2019 ◽  
Vol 29 (07) ◽  
pp. 1850058 ◽  
Author(s):  
Juan M. Górriz ◽  
Javier Ramírez ◽  
F. Segovia ◽  
Francisco J. Martínez ◽  
Meng-Chuan Lai ◽  
...  

Although much research has been undertaken, the spatial patterns, developmental course, and sexual dimorphism of brain structure associated with autism remains enigmatic. One of the difficulties in investigating differences between the sexes in autism is the small sample sizes of available imaging datasets with mixed sex. Thus, the majority of the investigations have involved male samples, with females somewhat overlooked. This paper deploys machine learning on partial least squares feature extraction to reveal differences in regional brain structure between individuals with autism and typically developing participants. A four-class classification problem (sex and condition) is specified, with theoretical restrictions based on the evaluation of a novel upper bound in the resubstitution estimate. These conditions were imposed on the classifier complexity and feature space dimension to assure generalizable results from the training set to test samples. Accuracies above [Formula: see text] on gray and white matter tissues estimated from voxel-based morphometry (VBM) features are obtained in a sample of equal-sized high-functioning male and female adults with and without autism ([Formula: see text], [Formula: see text]/group). The proposed learning machine revealed how autism is modulated by biological sex using a low-dimensional feature space extracted from VBM. In addition, a spatial overlap analysis on reference maps partially corroborated predictions of the “extreme male brain” theory of autism, in sexual dimorphic areas.


2018 ◽  
Author(s):  
Christiane Oedekoven ◽  
James L. Keidel ◽  
Stuart Anderson ◽  
Angus Nisbet ◽  
Chris Bird

Despite their severely impaired episodic memory, individuals with amnesia are able to comprehend ongoing events. Online representations of a current event are thought to be supported by a network of regions centred on the posterior midline cortex (PMC). By contrast, episodic memory is widely believed to be supported by interactions between the hippocampus and these cortical regions. In this MRI study, we investigated the encoding and retrieval of lifelike events (video clips) in a patient with severe amnesia likely resulting from a stroke to the right thalamus, and a group of 20 age-matched controls. Structural MRI revealed grey matter reductions in left hippocampus and left thalamus in comparison to controls. We first characterised the regions activated in the controls while they watched and retrieved the videos. There were no differences in activation between the patient and controls in any of the regions. We then identified a widespread network of brain regions, including the hippocampus, that were functionally connected with the PMC in controls. However, in the patient there was a specific reduction in functional connectivity between the PMC and a region of left hippocampus when both watching and attempting to retrieve the videos. A follow up analysis revealed that in controls the functional connectivity between these regions when watching the videos was correlated with memory performance. Taken together, these findings support the view that the interactions between the PMC and the hippocampus enable the encoding and retrieval of multimodal representations of the contents of an event.


2021 ◽  
Author(s):  
Abhibhav Sharma ◽  
Pinki Dey

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder whose aetiology is currently unknown. Although numerous studies have attempted to identify the genetic risk factor(s) of AD, the interpretability and/or the prediction accuracies achieved by these studies remained unsatisfactory, reducing their clinical significance. Here, we employ the ensemble of random-forest and regularized regression model (LASSO) to the AD-associated microarray datasets from four brain regions - Prefrontal cortex, Middle temporal gyrus, Hippocampus, and Entorhinal cortex- to discover novel genetic biomarkers through a machine learning-based feature-selection classification scheme. The proposed scheme unrevealed the most optimum and biologically significant classifiers within each brain region, which achieved by far the highest prediction accuracy of AD in 5-fold cross-validation (99% average). Interestingly, along with the novel and prominent biomarkers including CORO1C, SLC25A46, RAE1, ANKIB1, CRLF3, PDYN, numerous non-coding RNA genes were also observed as discriminator, of which AK057435 and BC037880 are uncharacterized long non-coding RNA genes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongsheng Xiao ◽  
Brandon J. Forys ◽  
Matthieu P. Vanni ◽  
Timothy H. Murphy

AbstractUnderstanding the basis of brain function requires knowledge of cortical operations over wide spatial scales and the quantitative analysis of brain activity in well-defined brain regions. Matching an anatomical atlas to brain functional data requires substantial labor and expertise. Here, we developed an automated machine learning-based registration and segmentation approach for quantitative analysis of mouse mesoscale cortical images. A deep learning model identifies nine cortical landmarks using only a single raw fluorescent image. Another fully convolutional network was adapted to delimit brain boundaries. This anatomical alignment approach was extended by adding three functional alignment approaches that use sensory maps or spatial-temporal activity motifs. We present this methodology as MesoNet, a robust and user-friendly analysis pipeline using pre-trained models to segment brain regions as defined in the Allen Mouse Brain Atlas. This Python-based toolbox can also be combined with existing methods to facilitate high-throughput data analysis.


2020 ◽  
Vol 8 (4) ◽  
pp. 47-62
Author(s):  
Francisca Oladipo ◽  
Ogunsanya, F. B ◽  
Musa, A. E. ◽  
Ogbuju, E. E ◽  
Ariwa, E.

The social media space has evolved into a large labyrinth of information exchange platform and due to the growth in the adoption of different social media platforms, there has been an increasing wave of interests in sentiment analysis as a paradigm for the mining and analysis of users’ opinions and sentiments based on their posts. In this paper, we present a review of contextual sentiment analysis on social media entries with a specific focus on Twitter. The sentimental analysis consists of two broad approaches which are machine learning which uses classification techniques to classify text and is further categorized into supervised learning and unsupervised learning; and the lexicon-based approach which uses a dictionary without using any test or training data set, unlike the machine learning approach.  


2021 ◽  
Vol 7 (29) ◽  
pp. eabf2513
Author(s):  
Luke J. Hearne ◽  
Ravi D. Mill ◽  
Brian P. Keane ◽  
Grega Repovš ◽  
Alan Anticevic ◽  
...  

Cognitive dysfunction is a core feature of many brain disorders, including schizophrenia (SZ), and has been linked to aberrant brain activations. However, it is unclear how these activation abnormalities emerge. We propose that aberrant flow of brain activity across functional connectivity (FC) pathways leads to altered activations that produce cognitive dysfunction in SZ. We tested this hypothesis using activity flow mapping, an approach that models the movement of task-related activity between brain regions as a function of FC. Using functional magnetic resonance imaging data from SZ individuals and healthy controls during a working memory task, we found that activity flow models accurately predict aberrant cognitive activations across multiple brain networks. Within the same framework, we simulated a connectivity-based clinical intervention, predicting specific treatments that normalized brain activations and behavior in patients. Our results suggest that dysfunctional task-evoked activity flow is a large-scale network mechanism contributing to cognitive dysfunction in SZ.


Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2208
Author(s):  
Maria Anna Ferlin ◽  
Michał Grochowski ◽  
Arkadiusz Kwasigroch ◽  
Agnieszka Mikołajczyk ◽  
Edyta Szurowska ◽  
...  

Machine learning-based systems are gaining interest in the field of medicine, mostly in medical imaging and diagnosis. In this paper, we address the problem of automatic cerebral microbleeds (CMB) detection in magnetic resonance images. It is challenging due to difficulty in distinguishing a true CMB from its mimics, however, if successfully solved, it would streamline the radiologists work. To deal with this complex three-dimensional problem, we propose a machine learning approach based on a 2D Faster RCNN network. We aimed to achieve a reliable system, i.e., with balanced sensitivity and precision. Therefore, we have researched and analysed, among others, impact of the way the training data are provided to the system, their pre-processing, the choice of model and its structure, and also the ways of regularisation. Furthermore, we also carefully analysed the network predictions and proposed an algorithm for its post-processing. The proposed approach enabled for obtaining high precision (89.74%), sensitivity (92.62%), and F1 score (90.84%). The paper presents the main challenges connected with automatic cerebral microbleeds detection, its deep analysis and developed system. The conducted research may significantly contribute to automatic medical diagnosis.


Sign in / Sign up

Export Citation Format

Share Document