scholarly journals Insights into the mysterious genetic variation profile oftprKinTreponema pallidumunder the development of natural human syphilis infection

2019 ◽  
Author(s):  
Dan Liu ◽  
Man-Li Tong ◽  
Yong Lin ◽  
Li-Li Liu ◽  
Li-Rong Lin ◽  
...  

AbstractAlthough the variations of thetprKgene inTreponema pallidumwere considered to play a critical role in the pathogenesis of syphilis, how actual variable characteristics oftprKin the course of natural human infection enabling the pathogen’s survive has thus far remained unclear. Here, we performed NGS to investigatetprKofT. pallidumdirectly from primary and secondary syphilis samples. Compared with diversity intprKof the strains from primary syphilis samples, there were more mixture variants found within seven V regions of thetprKgene among the strains from secondary syphilis samples, and the frequencies of predominant sequences within V regions oftprKwere generally decreased (less than 80%) with the proportion of minor variants in 10-60% increasing. Noteworthy, the variations within V regions oftprKalways obeyed a strict 3 bp changing pattern. AndtprKin the strains from the two-stage samples kept some stable amino acid sequences within V regions. Particularly, the amino acid sequences IASDGGAIKH and IASEDGSAGNLKH in V1 not only presented a high proportion of inter-population sharing, but also presented a relatively high frequency (above 80%) in the populations. Besides,tprKalways demonstrated remarkable variability in V6 at both the intra- and inter-strain levels regardless of the course. These findings unveiled that the different profile oftprK in T. pallidumdirectly from primary and secondary syphilis samples, indicating that throughout the development of syphilisT. pallidumconstantly varies its domaintprKgene to obtain the best adaptation to the host. While this changing was always subjected a strict gene conversion mechanism to keep an abnormal TprK. The highly stable peptides found in V1 would probably be promising potential vaccine components. And the highly heterogenetic regions (e.g. V6) could provide insight into the mysterious role oftprKin immune evasion.Author summaryAlthough the variations of thetprKgene inTreponema pallidumwere considered to play a critical role in the pathogenesis of syphilis, how actual variable characteristics oftprKin the course of natural human infection enabling the pathogen’s survive has thus far remained unclear. Here, we performed next-generation sequencing, a more sensitive and reliable approach, to investigatetprKofTreponema pallidumdirectly from primary and secondary syphilis patients, revealing that the profile oftprKinT. pallidumfrom the two-stage samples was different. Within the strains from secondary syphilis patients, more mixture variants within seven V regions oftprKwere found, the frequencies of their predominant sequences were generally decreased with the proportion of minor variants in 10-60% was increased. And the variations within V regions oftprKalways obeyed a strict 3 bp changing pattern. Noteworthy, the amino acid sequences IASDGGAIKH and IASEDGSAGNLKH in V1 presented a high proportion of inter-population sharing and presented a relatively high frequency in the populations. And V6 region always demonstrated remarkable variability at intra- and inter-patient levels regardless of the course. These findings provide insights into the mysterious role of TprK in immune evasion and for further exploring the potential vaccine components.

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


2021 ◽  
Vol 03 (01) ◽  
pp. 40-47
Author(s):  
Mukhtyar Nabi ◽  
◽  
Saddam Hussain ◽  
Muhammad Kamran ◽  
◽  
...  

Prison is a place for rehabilitation of offenders in every country of the world. The present study has tried to explore the present-day situation of the prison system of Pakistan and discuss its overcrowding condition in all four provinces. There are total 120 prisons in the country which hold authorized space for not more than 57,712 prisoners, but the number of inmates is 77,275, which is far away from the authorized space. This congested prison system not only creates hurdles in rehabilitation of prisoners but makes them more criminal by mixing of low and high frequency offenders. It also leads to various health and behavioral problems. Rehabilitation is only possible if there is balance in authorized and available prisoners in the prisons. The present article has come up with some viable suggestion for concerned authorities that can better perform their duty in eradication of this problem. The authors discussed the role of parole and probation officers in the elimination of these numbers in prison. The majority of the prisoners in our prisons are under-trail, thus the role of the judiciary has also been explored in balancing the incarceration ratio in prisons. Keywords: Prison System, Overcrowded Prisons, Parole and Probation, Judiciary, Courts, Pakistan


1990 ◽  
Vol 10 (3) ◽  
pp. 1153-1163
Author(s):  
D H Lowenstein ◽  
D A Butler ◽  
D Westaway ◽  
M P McKinley ◽  
S J DeArmond ◽  
...  

Given the critical role of the prion protein (PrP) in the transmission and pathogenesis of experimental scrapie, we investigated the PrP gene and its protein products in three hamster species, Chinese (CHa), Armenian (AHa), and Syrian (SHa), each of which were found to have distinctive scrapie incubation times. Passaging studies demonstrated that the host species, and not the source of scrapie prions, determined the incubation time for each species, and histochemical studies of hamsters with clinical signs of scrapie revealed characteristic patterns of neuropathology. Northern (RNA) analysis showed the size of PrP mRNA from CHa, AHa, and SHa hamsters to be 2.5, 2.4, and 2.1 kilobases, respectively. Immunoblotting demonstrated that the PrP isoforms were of similar size (33 to 35 kilodaltons); however, the monoclonal antibody 13A5 raised against SHa PrP did not react with the CHa or AHa PrP molecules. Comparison of the three predicted amino acid sequences revealed that each is distinct. Furthermore, differences within the PrP open reading frame that uniquely distinguish the three hamster species are within a hydrophilic segment of 11 amino acids that includes polymorphisms linked to scrapie incubation times in inbred mice and an inherited prion disease of humans. Single polymorphisms in this region correlate with the presence or absence of amyloid plaques for a given hamster species or mouse inbred strain. Our findings demonstrate distinctive molecular, pathological, and clinical characteristics of scrapie in three related species and are consistent with the hypothesis that molecular properties of the host PrP play a pivotal role in determining the incubation time and neuropathological features of scrapie.


2019 ◽  
Vol 1 (3) ◽  
pp. 390-403 ◽  
Author(s):  
Fang Ni ◽  
Wen-Mei Yu ◽  
Zhiguo Li ◽  
Douglas K. Graham ◽  
Lingtao Jin ◽  
...  

2006 ◽  
Vol 80 (16) ◽  
pp. 8124-8132 ◽  
Author(s):  
Patricia Rico ◽  
Pilar Ivars ◽  
Santiago F. Elena ◽  
Carmen Hernández

ABSTRACT The molecular diversity of Pelargonium flower break virus (PFBV) was assessed using a collection of isolates from different geographical origins, hosts, and collecting times. The genomic region examined was 1,828 nucleotides (nt) long and comprised the coding sequences for the movement (p7 and p12) and the coat (CP) proteins, as well as flanking segments including the entire 3′ untranslated region (3′ UTR). Some constraints limiting viral heterogeneity could be inferred from sequence analyses, such as the conservation of the amino acid sequences of p7 and of the shell domain of the CP, the maintenance of a leucine zipper motif in p12, and the preservation of a particular folding in the 3′ UTR. A remarkable covariation, involving five specific amino acid sites, was found in the CP of isolates largely propagated in the local lesion host Chenopodium quinoa and in the progeny of a PFBV variant subjected to serial passages in this host. Concomitant with this covariation, up to 30 nucleotide substitutions in a 1,428-nt region of the viral RNA could be attributable to C. quinoa-specific adaptation, representing one of the most outstanding cases of host-driven genome variation for a plant virus. Globally, the results indicate that the selective pressures exerted by the host play a critical role in shaping PFBV populations and that these populations are likely being selected for at both protein and RNA levels.


1990 ◽  
Vol 10 (3) ◽  
pp. 1153-1163 ◽  
Author(s):  
D H Lowenstein ◽  
D A Butler ◽  
D Westaway ◽  
M P McKinley ◽  
S J DeArmond ◽  
...  

Given the critical role of the prion protein (PrP) in the transmission and pathogenesis of experimental scrapie, we investigated the PrP gene and its protein products in three hamster species, Chinese (CHa), Armenian (AHa), and Syrian (SHa), each of which were found to have distinctive scrapie incubation times. Passaging studies demonstrated that the host species, and not the source of scrapie prions, determined the incubation time for each species, and histochemical studies of hamsters with clinical signs of scrapie revealed characteristic patterns of neuropathology. Northern (RNA) analysis showed the size of PrP mRNA from CHa, AHa, and SHa hamsters to be 2.5, 2.4, and 2.1 kilobases, respectively. Immunoblotting demonstrated that the PrP isoforms were of similar size (33 to 35 kilodaltons); however, the monoclonal antibody 13A5 raised against SHa PrP did not react with the CHa or AHa PrP molecules. Comparison of the three predicted amino acid sequences revealed that each is distinct. Furthermore, differences within the PrP open reading frame that uniquely distinguish the three hamster species are within a hydrophilic segment of 11 amino acids that includes polymorphisms linked to scrapie incubation times in inbred mice and an inherited prion disease of humans. Single polymorphisms in this region correlate with the presence or absence of amyloid plaques for a given hamster species or mouse inbred strain. Our findings demonstrate distinctive molecular, pathological, and clinical characteristics of scrapie in three related species and are consistent with the hypothesis that molecular properties of the host PrP play a pivotal role in determining the incubation time and neuropathological features of scrapie.


2007 ◽  
Vol 88 (12) ◽  
pp. 3445-3451 ◽  
Author(s):  
Min Sook Hwang ◽  
Kyung Nam Kim ◽  
Jeong Hyun Lee ◽  
Young In Park

The cucumber mosaic virus (CMV)-encoded 3a movement protein (MP) is indispensable for CMV movement in plants. We have previously shown that MP interacts directly with the CMV-encoded 2a polymerase protein in vitro. Here, we further dissected this interaction and determined the amino acid sequences that are responsible for the MP and 2a polymerase protein interaction. Both the N-terminal 21 amino acids and the central GDD motif of the 2a polymerase protein were important for interacting with the MP. Although each of the regions alone was sufficient for the interaction with MP, quantitative yeast two-hybrid analyses showed that they acted synergistically to enhance the binding affinity. The MP N-terminal 20 amino acids were sufficient for interacting with the 2a polymerase protein, and the serine residue at position 14 played a critical role in the interaction. Multiple sequence alignment showed that the 2a protein interacting regions and the serine at position 14 in the MP are highly conserved among subgroup I and II CMV isolates.


Glycobiology ◽  
2009 ◽  
Vol 19 (12) ◽  
pp. 1473-1484 ◽  
Author(s):  
Tracy K Carlson ◽  
Jordi B Torrelles ◽  
Kelly Smith ◽  
Tim Horlacher ◽  
Riccardo Castelli ◽  
...  

2005 ◽  
Vol 71 (12) ◽  
pp. 7888-7896 ◽  
Author(s):  
Sang-Jae Lee ◽  
Dong-Woo Lee ◽  
Eun-Ah Choe ◽  
Young-Ho Hong ◽  
Seong-Bo Kim ◽  
...  

ABSTRACT The araA gene encoding l-arabinose isomerase (AI) from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius was cloned, sequenced, and expressed in Escherichia coli. Analysis of the sequence revealed that the open reading frame of the araA gene consists of 1,491 bp that encodes a protein of 497 amino acid residues with a calculated molecular mass of 56,043 Da. Comparison of the deduced amino acid sequence of A. acidocaldarius AI (AAAI) with other AIs demonstrated that AAAI has 97% and 66% identities (99% and 83% similarities) to Geobacillus stearothermophilus AI (GSAI) and Bacillus halodurans AI (BHAI), respectively. The recombinant AAAI was purified to homogeneity by heat treatment, ion-exchange chromatography, and gel filtration. The purified enzyme showed maximal activity at pH 6.0 to 6.5 and 65°C under the assay conditions used, and it required divalent cations such as Mn2+, Co2+, and Mg2+ for its activity. The isoelectric point (pI) of the enzyme was about 5.0 (calculated pI of 5.5). The apparent Km values of the recombinant AAAI for l-arabinose and d-galactose were 48.0 mM (V max, 35.5 U/mg) and 129 mM (V max, 7.5 U/mg), respectively, at pH 6 and 65°C. Interestingly, although the biochemical properties of AAAI are quite similar to those of GSAI and BHAI, the three AIs from A. acidocaldarius (pH 6), G. stearothermophilus (pH 7), and B. halodurans (pH 8) exhibited different pH activity profiles. Based on alignment of the amino acid sequences of these homologous AIs, we propose that the Lys-269 residue of AAAI may be responsible for the ability of the enzyme to act at low pH. To verify the role of Lys-269, we prepared the mutants AAAI-K269E and BHAI-E268K by site-directed mutagenesis and compared their kinetic parameters with those of wild-type AIs at various pHs. The pH optima of both AAAI-K269E and BHAI-E268K were rendered by 1.0 units (pH 6 to 7 and 8 to 7, respectively) compared to the wild-type enzymes. In addition, the catalytic efficiency (k cat/Km ) of each mutant at different pHs was significantly affected by an increase or decrease in V max. From these results, we propose that the position corresponding to the Lys-269 residue of AAAI could play an important role in the determination of the pH optima of homologous AIs.


Sign in / Sign up

Export Citation Format

Share Document