scholarly journals The genomic architecture of competitive response of Arabidopsis thaliana is highly flexible between monospecific and plurispecific neighborhoods

2019 ◽  
Author(s):  
Cyril Libourel ◽  
Etienne Baron ◽  
Juliana Lenglet ◽  
Laurent Amsellem ◽  
Dominique Roby ◽  
...  

AbstractAlthough plants simultaneously interact with multiple neighboring species throughout their life cycle, there is still very limited information about the genetics of the competitive response in the context of plurispecific interactions. Using a local mapping population of Arabidopsis thaliana, we set up a Genome Wide Association study to estimate the extent of genetic variation of the competitive response in presence of 12 plant species assemblages, and to compare the genetic architecture of the competitive response between monospecific and plurispecific neighborhoods. Based on four phenotypic traits, we detected strong crossing reaction norms not only among the three monospecific neighborhoods, but also among the different plant assemblages. Accordingly, the genetic architecture of the competitive response was highly dependent on the identity and the relative abundance of the neighboring species. In addition, enriched biological processes underlying the competitive response largely differ between monospecific and plurispecific neighborhoods. In particular, receptor-like kinases and transporters were significantly enriched in plurispecific neighborhoods. Our results suggest that plants can integrate and respond to different species assemblages depending on the identity and number of each neighboring species, through a large range of genes associated mainly with perception and signaling processes leading to developmental and stress responses.

2021 ◽  
Vol 12 ◽  
Author(s):  
Cyril Libourel ◽  
Etienne Baron ◽  
Juliana Lenglet ◽  
Laurent Amsellem ◽  
Dominique Roby ◽  
...  

Plants are daily challenged by multiple abiotic and biotic stresses. A major biotic constraint corresponds to competition with other plant species. Although plants simultaneously interact with multiple neighboring species throughout their life cycle, there is still very limited information about the genetics of the competitive response in the context of plurispecific interactions. Using a local mapping population of Arabidopsis thaliana, we set up a genome wide association study (GWAS) to estimate the extent of genetic variation of competitive response in 12 plant species assemblages, based on three competitor species (Poa annua, Stellaria media, and Veronica arvensis). Based on five phenotypic traits, we detected strong crossing reaction norms not only between the three bispecific neighborhoods but also among the plurispecific neighborhoods. The genetic architecture of competitive response was highly dependent on the identity and the relative abundance of the neighboring species. In addition, most of the enriched biological processes underlying competitive responses largely differ among neighborhoods. While the RNA related processes might confer a broad range response toolkit for multiple traits in diverse neighborhoods, some processes, such as signaling and transport, might play a specific role in particular assemblages. Altogether, our results suggest that plants can integrate and respond to different species assemblages depending on the identity and number of each neighboring species, through a large range of candidate genes associated with diverse and unexpected processes leading to developmental and stress responses.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246510
Author(s):  
Mathias Ruben Gemmer ◽  
Chris Richter ◽  
Thomas Schmutzer ◽  
Manish L. Raorane ◽  
Björn Junker ◽  
...  

Metabolites play a key role in plants as they are routing plant developmental processes and are involved in biotic and abiotic stress responses. Their analysis can offer important information on the underlying processes. Regarding plant breeding, metabolite concentrations can be used as biomarkers instead of or in addition to genetic markers to predict important phenotypic traits (metabolic prediction). In this study, we applied a genome-wide association study (GWAS) in a wild barley nested association mapping (NAM) population to identify metabolic quantitative trait loci (mQTL). A set of approximately 130 metabolites, measured at early and late sampling dates, was analysed. For four metabolites from the early and six metabolites from the late sampling date significant mQTL (grouped as 19 mQTL for the early and 25 mQTL for the late sampling date) were found. Interestingly, all of those metabolites could be classified as sugars. Sugars are known to be involved in signalling, plant growth and plant development. Sugar-related genes, encoding mainly sugar transporters, have been identified as candidate genes for most of the mQTL. Moreover, several of them co-localized with known flowering time genes like Ppd-H1, HvELF3, Vrn-H1, Vrn-H2 and Vrn-H3, hinting on the known role of sugars in flowering. Furthermore, numerous disease resistance-related genes were detected, pointing to the signalling function of sugars in plant resistance. An mQTL on chromosome 1H in the region of 13 Mbp to 20 Mbp stood out, that alone explained up to 65% of the phenotypic variation of a single metabolite. Analysis of family-specific effects within the diverse NAM population showed the available natural genetic variation regarding sugar metabolites due to different wild alleles. The study represents a step towards a better understanding of the genetic components of metabolite accumulation, especially sugars, thereby linking them to biological functions in barley.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 493
Author(s):  
Salvatore Mastrangelo ◽  
Filippo Cendron ◽  
Gianluca Sottile ◽  
Giovanni Niero ◽  
Baldassare Portolano ◽  
...  

Through the development of the high-throughput genotyping arrays, molecular markers and genes related to phenotypic traits have been identified in livestock species. In poultry, plumage color is an important qualitative trait that can be used as phenotypic marker for breed identification. In order to assess sources of genetic variation related to the Polverara chicken breed plumage colour (black vs. white), we carried out a genome-wide association study (GWAS) and a genome-wide fixation index (FST) scan to uncover the genomic regions involved. A total of 37 animals (17 white and 20 black) were genotyped with the Affymetrix 600 K Chicken single nucleotide polymorphism (SNP) Array. The combination of results from GWAS and FST revealed a total of 40 significant markers distributed on GGA 01, 03, 08, 12 and 21, and located within or near known genes. In addition to the well-known TYR, other candidate genes have been identified in this study, such as GRM5, RAB38 and NOTCH2. All these genes could explain the difference between the two Polverara breeds. Therefore, this study provides the basis for further investigation of the genetic mechanisms involved in plumage color in chicken.


2021 ◽  
Vol 12 ◽  
Author(s):  
Juan Ma ◽  
Lifeng Wang ◽  
Yanyong Cao ◽  
Hao Wang ◽  
Huiyong Li

Kernel length, kernel width, and kernel thickness are important traits affecting grain yield and product quality. Here, the genetic architecture of the three kernel size traits was dissected in an association panel of 309 maize inbred lines using four statistical methods. Forty-two significant single nucleotide polymorphisms (SNPs; p < 1.72E-05) and 70 genes for the three traits were identified under five environments. One and eight SNPs were co-detected in two environments and by at least two methods, respectively, and they explained 5.87–9.59% of the phenotypic variation. Comparing the transcriptomes of two inbred lines with contrasting seed size, three and eight genes identified in the association panel showed significantly differential expression between the two genotypes at 15 and 39 days after pollination, respectively. Ten and 17 genes identified by a genome-wide association study were significantly differentially expressed between the two development stages in the two genotypes. Combining environment−/method-stable SNPs and differential expression analysis, ribosomal protein L7, jasmonate-regulated gene 21, serine/threonine-protein kinase RUNKEL, AP2-EREBP-transcription factor 16, and Zm00001d035222 (cell wall protein IFF6-like) were important candidate genes for maize kernel size and development.


2018 ◽  
Author(s):  
Nadia Bouain ◽  
Arthur Korte ◽  
Santosh B. Satbhai ◽  
Seung Y. Rhee ◽  
Wolfgang Busch ◽  
...  

AbstractThe molecular genetic mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using a panel of Arabidopsis thaliana natural accessions, we provide a comprehensive combinatorial analysis of RGR variation under macro- and micronutrient deficiency, namely phosphorus (P), iron (Fe), and zinc (Zn), which affect root growth in opposite directions. We found that while -P stimulates early RGR of most accessions, -Fe or -Zn reduces it. The combination of either -P-Fe or -P-Zn leads to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, Arabidopsis reference accession Columbia (Col-0) is not representative of the species under -P and -Zn. Using a genome wide association study, we identify candidate genes that control RGR under the assayed nutrient deficiency conditions. By using a network biology driven search using these candidate genes, we further identify a functional module enriched in regulation of cell cycle, DNA replication and chromatin modification that possibly underlies the suppression of root growth reduction in -P-Fe conditions. Collectively, our findings provide a framework for understanding the regulation of RGR under nutrient deficiency, and open new routes for the identification of both large effect genes and favorable allelic variations to improve root growth.


Science ◽  
2019 ◽  
Vol 365 (6456) ◽  
pp. eaat7693 ◽  
Author(s):  
Andrea Ganna ◽  
Karin J. H. Verweij ◽  
Michel G. Nivard ◽  
Robert Maier ◽  
Robbee Wedow ◽  
...  

Twin and family studies have shown that same-sex sexual behavior is partly genetically influenced, but previous searches for specific genes involved have been underpowered. We performed a genome-wide association study (GWAS) on 477,522 individuals, revealing five loci significantly associated with same-sex sexual behavior. In aggregate, all tested genetic variants accounted for 8 to 25% of variation in same-sex sexual behavior, only partially overlapped between males and females, and do not allow meaningful prediction of an individual’s sexual behavior. Comparing these GWAS results with those for the proportion of same-sex to total number of sexual partners among nonheterosexuals suggests that there is no single continuum from opposite-sex to same-sex sexual behavior. Overall, our findings provide insights into the genetics underlying same-sex sexual behavior and underscore the complexity of sexuality.


2017 ◽  
Author(s):  
Envel Kerdaffrec ◽  
Magnus Nordborg

AbstractSeed dormancy is a complex adaptive trait that controls the timing of seed germination, one of the major fitness components in many plant species. Despite being highly heritable, seed dormancy is extremely plastic and influenced by a wide range of environmental cues. Here, using a set of 92 Arabidopsis thaliana lines from Sweden, we investigate the effect of seed maturation temperature on dormancy variation at the population level. The response to temperature differs dramatically between lines, demonstrating that genotype and the maternal environment interact in controlling the trait. By performing a genome-wide association study (GWAS), we identified several candidate genes that could account for this plasticity, two of which are involved in the photoinduction of germination. Altogether, our results provide insight into both the molecular mechanisms and the evolution of dormancy plasticity, and can serve to improve our understanding of environmentally dependent life-history transitions.HighlightThe effect of low seed-maturation temperatures on seed dormancy is highly variable in Arabidopsis thaliana accessions from Sweden, denoting strong genotype-environment interactions, and a genome-wide association study identified compelling candidates that could account for this plasticity.


2020 ◽  
Author(s):  
Bryan C. Quach ◽  
Michael J. Bray ◽  
Nathan C. Gaddis ◽  
Mengzhen Liu ◽  
Teemu Palviainen ◽  
...  

AbstractCigarette smoking is the leading cause of preventable morbidity and mortality. Knowledge is evolving on genetics underlying initiation, regular smoking, nicotine dependence (ND), and cessation. We performed a genome-wide association study using the Fagerström Test for ND (FTND) in 58,000 smokers of European or African ancestry. Five genome-wide significant loci, including two novel loci MAGI2/GNAI1 (rs2714700) and TENM2 (rs1862416) were identified, and loci reported for other smoking traits were extended to ND. Using the heaviness of smoking index (HSI) in the UK Biobank (N=33,791), rs2714700 was consistently associated, but rs1862416 was not associated, likely reflecting ND features not captured by the HSI. Both variants were cis-eQTLs (rs2714700 for MAGI2-AS3 in hippocampus, rs1862416 for TENM2 in lung), and expression of genes spanning ND-associated variants was enriched in cerebellum. SNP-based heritability of ND was 8.6%, and ND was genetically correlated with 17 other smoking traits (rg=0.40–0.95) and co-morbidities. Our results emphasize the FTND as a composite phenotype that expands genetic knowledge of smoking, including loci specific to ND.


Sign in / Sign up

Export Citation Format

Share Document