scholarly journals Deciphering the unique SNPs among leading Indian Tomato Cultivars using Double Digestion Restriction Associated DNA sequencing

2019 ◽  
Author(s):  
Reddaiah Bodanapu ◽  
Sreehari V Vasudevan ◽  
Sivarama Prasad Lekkala ◽  
Navajeet Chakravartty ◽  
Krishna Lalam ◽  
...  

World-wide grown and consumed tomato (Solanum lycopersicum) crop used as model system for new cultivar and fruit development. Genetic and genomic research of Indian tomato cultivars will provide an insight to develop new breeding strategies and crop improvement. The present study aimed to identify the high quality common and unique single nucleotide polymorphisms (SNPs), present in 9 different Indian tomato cultivars using double digestion restriction associated DNA sequencing (ddRAD-seq). Total of 36,847,092 raw reads (3.68 GB) were generated for all samples and 3,329,625 of high-quality reads were aligned uniquely to the reference tomato genome. Using stringent filtering, a total of 1,165 SNPs and 69 INDELs were found in genic regions, along with the unique variants to each cultivar was observed. Similarly, 7 and 33 variants were identified in chloroplast and mitochondrial genome of tomato. In addition, the population structure and genetic relationship among these cultivars suggested 4 well-differentiated sub-populations. Functional annotation of SNP/INDLEs associated with flanking sequences along with gene ontology and pathway analysis was performed. Identified SNPs/INDELs could be useful as markers for variety identification for genetic purity analysis. Findings from this work will be useful to plant breeders and research community to deepen their understanding and enhance tomato breeding programs.

Author(s):  
Reddaiah Bodanapu ◽  
Sreehari V. Vasudevan ◽  
Navajeet Chakravartty ◽  
Krishna Lalam ◽  
Sivarama Prasad Lekkala ◽  
...  

World-wide grown and consumed tomato (Solanum lycopersicum) is used as model crop for newcultivar and fruit development. Genetic and genomic studieson Indian tomato cultivars will provide an insight that will enable development of breeding strategies and crop improvement. The present study aims to identifythe high quality common and unique SNPs and INDELs, present in 9 different Indian tomato cultivars using double digest restriction site-associated DNA sequencing (ddRAD-seq). A total of 36.8 million raw reads were generated for selected cultivars and an average of 94% high-quality reads of each were uniquely aligned to the reference tomato genome (SLv3.0). Out of 6,957 SNPs and188 INDELs, we found 1,165 SNPs and 68 INDELs in genic regions. The genetic relationship among these cultivars suggested 4well-differentiated groups of cultivars. Similarly, 7 and 33 SNPs were identified in chloroplast and mitochondrial genomes of tomato. SNPs markers were identified for common and specific genes associated with different pathways and their gene ontology (GO) annotated. These SNPs/INDELs could be useful as markers for variety identification for genetic purity analysis. Findings from this work will be useful to the research community, particularly, plant breeders, as a resource for SNP marker development.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1342
Author(s):  
Shaghayegh Mehravi ◽  
Gholam Ali Ranjbar ◽  
Ghader Mirzaghaderi ◽  
Anita Alice Severn-Ellis ◽  
Armin Scheben ◽  
...  

The species of Pimpinella, one of the largest genera of the family Apiaceae, are traditionally cultivated for medicinal purposes. In this study, high-throughput double digest restriction-site associated DNA sequencing technology (ddRAD-seq) was used to identify single nucleotide polymorphisms (SNPs) in eight Pimpinella species from Iran. After double-digestion with the enzymes HpyCH4IV and HinfI, a total of 334,702,966 paired-end reads were de novo assembled into 1,270,791 loci with an average of 28.8 reads per locus. After stringent filtering, 2440 high-quality SNPs were identified for downstream analysis. Analysis of genetic relationships and population structure, based on these retained SNPs, indicated the presence of three major groups. Gene ontology and pathway analysis were determined by using comparison SNP-associated flanking sequences with a public non-redundant database. Due to the lack of genomic resources in this genus, our present study is the first report to provide high-quality SNPs in Pimpinella based on a de novo analysis pipeline using ddRAD-seq. This data will enhance the molecular knowledge of the genus Pimpinella and will provide an important source of information for breeders and the research community to enhance breeding programs and support the management of Pimpinella genomic resources.


Author(s):  
V. Satya Srii ◽  
N. Nethra ◽  
K. Umarani ◽  
H.C. Lohithaswa ◽  
Y.G. Shadakshari ◽  
...  

Maize (Zea mays) is the third major cereal crop in the Indian subcontinent, but the crop yields per hectare of Indian maize cultivars are less than half of the global average due to the impurity of seed lots supplied to farmers. In this study, we discovered high-quality Single Nucleotide Polymorphic markers (SNPs) in two widely cultivated maize hybrids and their parental inbreds. Paired-end double digest restriction site-associated DNA sequencing was used to discover SNPs and a total of 30,764,454 reads with a read length of 151 bp per sample were generated. Genotyping of SNPs for maize hybrids ‘MAH 14-5’ and ‘Hema’ revealed a total of 47,812 and 15,815 Genetic Purity Analysis markers, respectively, of which 44,388 and 12,391 were unique with 3,424 being common to both hybrids. Identified SNPs were used to develop primers for Kompetitive Allele-Specific PCR genotyping assays to determine the genetic purity of 10 seed lots and the results were found to correlate with Grow-out-Tests. Thus, the SNPs discovered in this study proved reliable to test the genetic purity of commercial seed lots. Advances in plant molecular breeding tools especially ddRADseq for SNP discovery offer new opportunities to genotype existing cultivars and accelerate the production of genetically pure seeds.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Xianbo Jia ◽  
Peng Ding ◽  
Shiyi Chen ◽  
Shaokang Zhao ◽  
Jie Wang ◽  
...  

Pigmentation genes such as MC1R, MITF, TYR, TYRP1, and MLPH play a major role in rabbit coat color. To understand the genotypic profile underlying coat color in indigenous Chinese rabbit breeds, portions of the above-mentioned genes were amplified and variations in them were analyzed by DNA sequencing. Based on the analysis of 24 Tianfu black rabbits, 24 Sichuan white rabbits, 24 Sichuan gray rabbits, and 24 Fujian yellow rabbits, two indels in MC1R, three SNPs in MITF, five SNPs (single nucleotide polymorphisms) in TYR, one SNP in TYRP1, and three SNPs in MLPH were discovered. These variations have low-to-moderate polymorphism, and there are significant differences in their distribution among the different breeds (p < 0.05). These results provide more information regarding the genetic background of these native rabbit breeds and reveal their high-quality genetic resources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juan Moles ◽  
Shahan Derkarabetian ◽  
Stefano Schiaparelli ◽  
Michael Schrödl ◽  
Jesús S. Troncoso ◽  
...  

AbstractSampling impediments and paucity of suitable material for molecular analyses have precluded the study of speciation and radiation of deep-sea species in Antarctica. We analyzed barcodes together with genome-wide single nucleotide polymorphisms obtained from double digestion restriction site-associated DNA sequencing (ddRADseq) for species in the family Antarctophilinidae. We also reevaluated the fossil record associated with this taxon to provide further insights into the origin of the group. Novel approaches to identify distinctive genetic lineages, including unsupervised machine learning variational autoencoder plots, were used to establish species hypothesis frameworks. In this sense, three undescribed species and a complex of cryptic species were identified, suggesting allopatric speciation connected to geographic or bathymetric isolation. We further observed that the shallow waters around the Scotia Arc and on the continental shelf in the Weddell Sea present high endemism and diversity. In contrast, likely due to the glacial pressure during the Cenozoic, a deep-sea group with fewer species emerged expanding over great areas in the South-Atlantic Antarctic Ridge. Our study agrees on how diachronic paleoclimatic and current environmental factors shaped Antarctic communities both at the shallow and deep-sea levels, promoting Antarctica as the center of origin for numerous taxa such as gastropod mollusks.


2010 ◽  
Vol 38 (2) ◽  
pp. 358-366 ◽  
Author(s):  
P. Selvakumar ◽  
R. Ravikesavan ◽  
A. Gopikrishnan ◽  
K. Thiyagu ◽  
S. Preetha ◽  
...  

1970 ◽  
Vol 2 (1) ◽  
pp. 72-89
Author(s):  
Umesh R Rosyara ◽  
Bal K Joshi

DNA-based molecular markers have been extensively utilized for mapping of genes and quantitative trait loci (QTL) of interest based on linkage analysis in mapping populations. This is in contrast to human genetics that use of linkage disequilibrium (LD)-based mapping for fine mapping of QTLs using single nucleotide polymorphisms. LD based association mapping (AM) has promise to be used in plants. Possible use of such approach may be for fine mapping of genes / QTLs, identifying favorable alleles for marker aided selection and cross validation of results from linkage mapping for precise location of genes / QTLs of interest. In the present review, we discuss different mapping populations, approaches, prospects and limitations of using association mapping in plant breeding populations. This is expected to create awareness in plant breeders in use of AM in crop improvement activities.Key words: Association mapping; plant breeding; DNA marker; quantitative trait lociDOI: http://dx.doi.org/10.3126/njb.v2i1.5686  Nepal Journal of Biotechnology Jan.2012, Vol.2(1): 72-89


Author(s):  
Joanne A. Labate

A diversity panel of 190 National Plant Germplasm System (NPGS) tomato (Solanum lycopersicum) accessions was genotyped using genotyping by sequencing. These originated from 31 countries and included fresh market, ornamental, processing, breeders’ lines, landraces, and home gardening types, as well as six different accessions of the economically valuable cultivar San Marzano. Most of the 34,531 discovered single nucleotide polymorphisms were rare and therefore excluded from downstream analyses. A total of 3713 high-quality, mapped single nucleotide polymorphisms that were present in at least two accessions were used to estimate genetic distances and population structure. Results showed that these phenotypically and geographically diverse NPGS tomato accessions were closely related to each other. However, a subset of divergent genotypes was identified that included landraces from primary centers of diversity (South America), secondary centers of diversity (Italy, Taiwan, and France), and genotypes that originated from wild species through 20th century breeding for disease resistance (e.g., ‘VFNT Cherry’). Extreme variant accessions produce cultivated fruit traits in a background that contains many wild or primitive genes. These accessions are promising sources of novel genes for continued crop improvement.


2020 ◽  
Vol 11 (87) ◽  
Author(s):  
Zhanna Bazyliuk ◽  

The study of the human genome makes it possible to use genetic information to identify individual traits, diagnosis of diseases and forecasting and prevention of their development, promotes a personal approach when choosing treatment methods; population research, ethnogenesis and evolutionary processes. Introduction of DNA sequencing methods in domestic genetic fingerprinting will contribute to a more informative establishment of human genetic traits. The main purpose of molecular genetic research is to establish the genetic features of missing people, their relatives, to conduct paternity, to identify traces of biological origin and their identification. This article talks about the gradual development of DNA sequencing technology, which is conventionally divided into three types. The first type includes sequencing using capillary electrophoresis and pyrosequencing. The second type is high-throughput pyrosequencing, semiconductor, cyclic ligase, and the use of fluorescently labeled precursors, based on the sequencing of millions of DNA fragments simultaneously. The third stage includes methods that do not require prior sample preparation. These are methods of nanoporous sequencing, sequencing of one molecule, one-molecular sequencing. Today, each of the sequencing methods is aimed at performing different tasks. A number of methods are promising in the field of molecular-genetic examination. In world jurisprudence, sequencing is implemented mainly with the help of devices - Illumina’s, MiSeq FGx, Ion Torrent PGM from ThermoFisher and Ion S5. Research in forensic expertise of single nucleotide polymorphisms (SNP), sequencing of STR-loci and mitochondrial DNA, STR-loci and SNP-markers of the Y chromosome, will provide a high level of information, determination of human phenotypic traits, the possibility of establishing genetic traits from significantly degraded DNA. This article deals with modern problems of identification of human genetic traits and the prospect of introduction of the newest methods of sequencing for their qualitative and complete establishment.


Sign in / Sign up

Export Citation Format

Share Document