scholarly journals The Marginal Cells of the Caenorhabditis elegans Pharynx Scavenge Cholesterol and Other Hydrophobic Small Molecules

2019 ◽  
Author(s):  
Muntasir Kamal ◽  
Houtan Moshiri ◽  
Lilia Magomedova ◽  
Duhyun Han ◽  
Ken CQ Nguyen ◽  
...  

AbstractThe nematode worm Caenorhabditis elegans is a bacterivore filter feeder. Through the contraction of the worm’s pharynx, a bacterial suspension is sucked into the pharynx’s lumen. Excess liquid is then shunted out of the buccal cavity through ancillary channels that are made from specialized pharyngeal cells called marginal cells. Through the characterization of our library of worm-bioactive small molecules (a.k.a. wactives), we found that more than one third of wactives visibly accumulate inside of the marginal cells as crystals or globular spheres. Wactives that visibly accumulate are typically more hydrophobic than those that do not. To understand why wactives accumulate specifically in marginal cells, we performed a forward genetic screen for mutants that resist the lethality associated with one crystallizing wactive. We identified a presumptive sphingomyelin-synthesis pathway that is necessary for crystal and sphere accumulation. Sphingomyelin is a phospholipid that is enriched in the outer leaflet of the plasma membranes of most metazoans. We find that the predicted terminal enzyme of this pathway, sphingomyelin synthase 5 (SMS-5), is expressed in the pharynx, contributes to sphingomyelin abundance, and that its expression in marginal cells is sufficient for wactive accumulation. We also find that the expression of SMS-5 in the marginal cells is necessary for the proper absorption of exogenous cholesterol, without which C. elegans cannot develop. We conclude that the sphingomyelin-rich plasma membrane of the marginal cells acts as a sink to scavenge important hydrophobic nutrients from the filtered liquid that might otherwise be shunted back into the environment.One sentence summaryThe anterior pharynx of C. elegans is a Sink for Hydrophobic Small Molecules

2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 571-580 ◽  
Author(s):  
William B Raich ◽  
Celine Moorman ◽  
Clay O Lacefield ◽  
Jonah Lehrer ◽  
Dusan Bartsch ◽  
...  

Abstract The pathology of trisomy 21/Down syndrome includes cognitive and memory deficits. Increased expression of the dual-specificity protein kinase DYRK1A kinase (DYRK1A) appears to play a significant role in the neuropathology of Down syndrome. To shed light on the cellular role of DYRK1A and related genes we identified three DYRK/minibrain-like genes in the genome sequence of Caenorhabditis elegans, termed mbk-1, mbk-2, and hpk-1. We found these genes to be widely expressed and to localize to distinct subcellular compartments. We isolated deletion alleles in all three genes and show that loss of mbk-1, the gene most closely related to DYRK1A, causes no obvious defects, while another gene, mbk-2, is essential for viability. The overexpression of DYRK1A in Down syndrome led us to examine the effects of overexpression of its C. elegans ortholog mbk-1. We found that animals containing additional copies of the mbk-1 gene display behavioral defects in chemotaxis toward volatile chemoattractants and that the extent of these defects correlates with mbk-1 gene dosage. Using tissue-specific and inducible promoters, we show that additional copies of mbk-1 can impair olfaction cell-autonomously in mature, fully differentiated neurons and that this impairment is reversible. Our results suggest that increased gene dosage of human DYRK1A in trisomy 21 may disrupt the function of fully differentiated neurons and that this disruption is reversible.


Genome ◽  
1993 ◽  
Vol 36 (4) ◽  
pp. 712-724 ◽  
Author(s):  
Dave Pilgrim

A genetic approach was taken to identify new transposable element Tc1 -dependent polymorphisms on the left end of linkage group III in the nematode Caenorhabditis elegans. The cloning of the genomic DNA surrounding the Tc1 allowed the selection of overlapping clones (from the collection being used to assemble the physical map of the C. elegans genome). A contig of approximately 600–800 kbp in the region has been identified, the genetic map of the region has been refined, and 10 new RFLPs as well as at least four previously characterized genetic loci have been positioned onto the physical map, to the resolution of a few cosmids. This analysis demonstrated the ability to combine physical and genetic mapping for the rapid analysis of large genomic regions (0.5–1 Mbp) in genetically amenable eukaryotes.Key words: Caenorhabditis elegans, genome analysis, RFLP, physical map, genetic map.


1996 ◽  
Vol 317 (3) ◽  
pp. 721-729 ◽  
Author(s):  
Johanna VEIJOLA ◽  
Pia ANNUNEN ◽  
Peppi KOIVUNEN ◽  
Antony P. PAGE ◽  
Taina PIHLAJANIEMI ◽  
...  

Protein disulphide isomerase (PDI; EC 5.3.4.1) is a multifunctional polypeptide that is identical to the β subunit of prolyl 4-hydroxylases. We report here on the cloning and expression of the Caenorhabditis elegans PDI/β polypeptide and its isoform. The overall amino acid sequence identity and similarity between the processed human and C. elegans PDI/β polypeptides are 61% and 85% respectively, and those between the C. elegans PDI/β polypeptide and the PDI isoform 46% and 73%. The isoform differs from the PDI/β and ERp60 polypeptides in that its N-terminal thioredoxin-like domain has an unusual catalytic site sequence -CVHC-. Expression studies in insect cells demonstrated that the C. elegans PDI/β polypeptide forms an active prolyl 4-hydroxylase α2β2 tetramer with the human α subunit and an αβ dimer with the C. elegans α subunit, whereas the C. elegans PDI isoform formed no prolyl 4-hydroxylase with either α subunit. Removal of the 32-residue C-terminal extension from the C. elegans α subunit totally eliminated αβ dimer formation. The C. elegans PDI/β polypeptide formed less prolyl 4-hydroxylase with both the human and C. elegans α subunits than did the human PDI/β polypeptide, being particularly ineffective with the C. elegans α subunit. Experiments with hybrid polypeptides in which the C-terminal regions had been exchanged between the human and C. elegans PDI/β polypeptides indicated that differences in the C-terminal region are one reason, but not the only one, for the differences in prolyl 4-hydroxylase formation between the human and C. elegans PDI/β polypeptides. The catalytic properties of the C. elegans prolyl 4-hydroxylase αβ dimer were very similar to those of the vertebrate type II prolyl 4-hydroxylase tetramer, including the Km for the hydroxylation of long polypeptide substrates.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Muntasir Kamal ◽  
Houtan Moshiri ◽  
Lilia Magomedova ◽  
Duhyun Han ◽  
Ken C. Q. Nguyen ◽  
...  

2008 ◽  
Vol 19 (3) ◽  
pp. 785-796 ◽  
Author(s):  
Claire Lecroisey ◽  
Edwige Martin ◽  
Marie-Christine Mariol ◽  
Laure Granger ◽  
Yannick Schwab ◽  
...  

In Caenorhabditis elegans, mutations of the dystrophin homologue, dys-1, produce a peculiar behavioral phenotype (hyperactivity and a tendency to hypercontract). In a sensitized genetic background, dys-1 mutations also lead to muscle necrosis. The dyc-1 gene was previously identified in a genetic screen because its mutation leads to the same phenotype as dys-1, suggesting that the two genes are functionally linked. Here, we report the detailed characterization of the dyc-1 gene. dyc-1 encodes two isoforms, which are expressed in neurons and muscles. Isoform-specific RNAi experiments show that the absence of the muscle isoform, and not that of the neuronal isoform, is responsible for the dyc-1 mutant phenotype. In the sarcomere, the DYC-1 protein is localized at the edges of the dense body, the nematode muscle adhesion structure where actin filaments are anchored and linked to the sarcolemma. In yeast two-hybrid assays, DYC-1 interacts with ZYX-1, the homologue of the vertebrate focal adhesion LIM domain protein zyxin. ZYX-1 localizes at dense bodies and M-lines as well as in the nucleus of C. elegans striated muscles. The DYC-1 protein possesses a highly conserved 19 amino acid sequence, which is involved in the interaction with ZYX-1 and which is sufficient for addressing DYC-1 to the dense body. Altogether our findings indicate that DYC-1 may be involved in dense body function and stability. This, taken together with the functional link between the C. elegans DYC-1 and DYS-1 proteins, furthermore suggests a requirement of dystrophin function at this structure. As the dense body shares functional similarity with both the vertebrate Z-disk and the costamere, we therefore postulate that disruption of muscle cell adhesion structures might be the primary event of muscle degeneration occurring in the absence of dystrophin, in C. elegans as well as vertebrates.


2007 ◽  
Vol 178 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Anjon Audhya ◽  
Arshad Desai ◽  
Karen Oegema

The endoplasmic reticulum (ER) is a contiguous network of interconnected membrane sheets and tubules. The ER is differentiated into distinct domains, including the peripheral ER and nuclear envelope. Inhibition of two ER proteins, Rtn4a and DP1/NogoA, was previously shown to inhibit the formation of ER tubules in vitro. We show that the formation of ER tubules in vitro also requires a Rab family GTPase. Characterization of the 29 Caenorhabditis elegans Rab GTPases reveals that depletion of RAB-5 phenocopies the defects in peripheral ER structure that result from depletion of RET-1 and YOP-1, the C. elegans homologues of Rtn4a and DP1/NogoA. Perturbation of endocytosis by other means did not affect ER structure; the role of RAB-5 in ER morphology is thus independent of its well-studied requirement for endocytosis. RAB-5 and YOP-1/RET-1 also control the kinetics of nuclear envelope disassembly, which suggests an important role for the morphology of the peripheral ER in this process.


2019 ◽  
Author(s):  
Johannes Zimmermann ◽  
Nancy Obeng ◽  
Wentao Yang ◽  
Barbara Pees ◽  
Carola Petersen ◽  
...  

AbstractThe microbiome is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of the bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiome of the model nematode Caenorhabditis elegans. We integrated whole genome sequences of 77 bacterial microbiome members with metabolic modelling and experimental characterization of bacterial physiology. We found that, as a community, the microbiome can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses further revealed that nutrient context can influence how bacteria interact within the microbiome. We identified key bacterial traits that are likely to influence the microbe’s ability to colonize C. elegans (e.g., pyruvate fermentation to acetoin) and the resulting effects on nematode fitness (e.g., hydroxyproline degradation). Considering that the microbiome is usually neglected in the comprehensive research on this nematode, the resource presented here will help our understanding of C. elegans biology in a more natural context. Our integrative approach moreover provides a novel, general framework to dissect microbiome-mediated functions.


1992 ◽  
Vol 282 (1) ◽  
pp. 219-223 ◽  
Author(s):  
T Sassa ◽  
J Miwa

Protein kinase C (PKC) of Caenorhabditis elegans was identified by enzymatic activity and [3H]phorbol 12,13-dibutyrate binding after DEAE-Sephacel column chromatography of a crude cytosolic extract. Ca(2+)-dependent activation of nematode PKC was observed in the presence of phosphatidylserine. The enzyme was maximally activated by 1,2-dioleoylglycerol or phorbol 12-myristate 13-acetate in the presence of phosphatidylserine and Ca2+. Hydroxyapatite column chromatography showed only one peak of PKC activity with histone H1 and myelin basic protein as substrates. The enzyme was purified to near homogeneity by sequential chromatography on polylysine-agarose and phosphatidylserine affinity columns. The purified protein showed a molecular mass of 79 kDa on SDS/PAGE. The substrate specificity of the C. elegans enzyme was shown to be different from that of mammalian PKCs. Here we describe some of the properties of the nematode enzyme.


2008 ◽  
Vol 74 (13) ◽  
pp. 4185-4198 ◽  
Author(s):  
Rachel E. Muir ◽  
Man-Wah Tan

ABSTRACT We describe the pathogenic interaction between a newly described gram-positive bacterium, Leucobacter chromiireducens subsp. solipictus strain TAN 31504, and the nematode Caenorhabditis elegans. TAN 31504 pathogenesis on C. elegans is exerted primarily through infection of the adult nematode uterus. TAN 31504 enters the uterus through the external vulval opening, and the ensuing uterine infection is strongly correlated with a significant reduction in host life span. Young worms can feed and develop on TAN 31504, but not preferably over the standard food source. C. elegans worms reared on TAN 31504 as the sole food source develop into thin adults with little intestinal fat stores, produce few progeny, and subsequently cannot persist on the pathogenic food source. Within 12 h of exposure, adult worms challenged with TAN 31504 alter the expression of a number of C. elegans innate immunity-related genes, including nlp-29, which encodes a neuropeptide-like protein. C. elegans worms exposed briefly to TAN 31504 develop lethal uterine infections analogous to worms exposed continuously to pathogen, suggesting that mere contact with the pathogen is sufficient for the host to become infected. TAN 31504 produces a robust biofilm, and this behavior is speculated to play a role in the virulence exerted on the nematode host. The interaction between TAN 31504 and C. elegans provides a convenient opportunity to study bacterial virulence on nematode tissues other than the intestine and may allow for the discovery of host innate immunity elicited specifically in response to vulva-uterus infection.


Sign in / Sign up

Export Citation Format

Share Document