scholarly journals The caudate nucleus controls coordinated patterns of adaptive, context-dependent adjustments to complex decisions

2019 ◽  
Author(s):  
Takahiro Doi ◽  
Yunshu Fan ◽  
Joshua I. Gold ◽  
Long Ding

AbstractOur decisions often need to balance what we observe and what we desire. However, our understanding of how and where in the brain such decisions are made remains limited. A prime candidate for integrating sensory observations and desired rewards, and a focus of many modeling studies, is the basal ganglia pathway, which is known to make separate contributions to perceptual decisions that require the interpretation of uncertain sensory evidence and value-based decisions that select among outcome options 1-16. Here we report direct evidence for a causal role for a major input station of the basal ganglia, the caudate nucleus, in incorporating reward context and uncertain visual evidence to guide adaptive decision-making. In monkeys making saccadic decisions based on visual motion evidence and asymmetric reward-choice associations 17, single caudate neurons encoded information about both the visual evidence and the asymmetric rewards. Electrical microstimulation at caudate sites with task-modulated activity during motion viewing affected how the visual and reward information was used to form the decision. The microstimulation effects included coordinated changes in multiple computational components of the decision process, mimicking the monkeys’ voluntary adjustments in response to the asymmetric reward contexts. These results imply that the caudate nucleus plays key roles in coordinating the deliberative decision process that balances external evidence and internal preferences to guide adaptive behavior.

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Takahiro Doi ◽  
Yunshu Fan ◽  
Joshua I Gold ◽  
Long Ding

Our decisions often balance what we observe and what we desire. A prime candidate for implementing this complex balancing act is the basal ganglia pathway, but its roles have not yet been examined experimentally in detail. Here, we show that a major input station of the basal ganglia, the caudate nucleus, plays a causal role in integrating uncertain visual evidence and reward context to guide adaptive decision-making. In monkeys making saccadic decisions based on motion cues and asymmetric reward-choice associations, single caudate neurons encoded both sources of information. Electrical microstimulation at caudate sites during motion viewing affected the monkeys’ decisions. These microstimulation effects included coordinated changes in multiple computational components of the decision process that mimicked the monkeys’ similarly coordinated voluntary strategies for balancing visual and reward information. These results imply that the caudate nucleus plays causal roles in coordinating decision processes that balance external evidence and internal preferences.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ryuto Yashiro ◽  
Isamu Motoyoshi

Abstract Humans make decisions under various natural circumstances, integrating multiple pieces of information that are distributed over space and time. Although psychophysical and physiological studies have investigated temporal dynamics underlying perceptual decision making, weighting profiles for inliers and outliers during temporal integration have yet to be fully investigated in most studies. Here, we examined the temporal weighting profile of a computational model characterized by a leaky integrator of sensory evidence. As a corollary of its leaky nature, the model predicts the recency effect and overweights outlying elements around the end of the stream. Moreover, we found that the model underweights outlying values occurring earlier in the stream (i.e., robust averaging). We also show that human observers exhibit exactly the same weighting profile in an average estimation task. These findings suggest that the adaptive decision process in the brain results in the time-dependent decision weighting, the “peak-at-end” rule, rather than the peak-end rule in behavioral economics.


Author(s):  
Vladimir S. Kostià ◽  
Marina Stojanovié-Svetel ◽  
Aleksandra Kacar

ABSTRACT:Background:Symptomatic (secondary) dystonias associated isolated lesions in the brain provide insight into etiopathogenesis of the idiopathic form of dystonia and are a basis for establishing the possible correlation between the anatomy of a lesion and the type of dystonia according to muscles affected.Methods:In 358 patients with differently distributed dystonias, a group of 16 patients (4.5%) was encountered in whom dystonia was associated with focal brain lesions.Results:Of the 16 patients, 3 patients had generalized, 3 segmental and 4 hemidystonia, while the remaining 6 patients had focal dystonia. The most frequent etiologies were infarction in 7, and tumor in 4 patients. These lesions were usually found in the lenticular and caudate nucleus, thalamus, and in the case of blepharospasm in the upper brainstem.Conclusions:Our results support the suggestion that dystonia is caused by a dysfunction of the basal ganglia.


Author(s):  
Mensura Altumbabic ◽  
Marc R. Del Bigio ◽  
Scott Sutherland

ABSTRACT:Background:Transtentorial herniation of large cerebral fragments is a rare phenomenon.Method:Case StudyResults:Examination of the brain of a 35-year-old male showed massive intracerebral hemorrhage resulting in displacement of basal ganglia components into the fourth ventricle.Conclusions:Sufficiently rapid intracerebral bleeding can dissect fragments of cerebrum and displace them long distances across the tentorial opening.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Guang ◽  
Halen Baker ◽  
Orilia Ben-Yishay Nizri ◽  
Shimon Firman ◽  
Uri Werner-Reiss ◽  
...  

AbstractDeep brain stimulation (DBS) is currently a standard procedure for advanced Parkinson’s disease. Many centers employ awake physiological navigation and stimulation assessment to optimize DBS localization and outcome. To enable DBS under sedation, asleep DBS, we characterized the cortico-basal ganglia neuronal network of two nonhuman primates under propofol, ketamine, and interleaved propofol-ketamine (IPK) sedation. Further, we compared these sedation states in the healthy and Parkinsonian condition to those of healthy sleep. Ketamine increases high-frequency power and synchronization while propofol increases low-frequency power and synchronization in polysomnography and neuronal activity recordings. Thus, ketamine does not mask the low-frequency oscillations used for physiological navigation toward the basal ganglia DBS targets. The brain spectral state under ketamine and propofol mimicked rapid eye movement (REM) and Non-REM (NREM) sleep activity, respectively, and the IPK protocol resembles the NREM-REM sleep cycle. These promising results are a meaningful step toward asleep DBS with nondistorted physiological navigation.


1995 ◽  
Vol 29 (3) ◽  
pp. 276-281 ◽  
Author(s):  
P. F. Wadsworth ◽  
H. B. Jones ◽  
J. B. Cavanagh

Whole coronal slices from 6 levels of the brain of 16 cynomolgus monkeys (8 control and 8 treated by daily gavage with a novel pharmaceutical agent for one year) were examined histologically. Mineralized bodies were identified only in coronal sections passing through the optic chiasma and mammillary bodies. Identical mineralized structures were present in the basal ganglia of both control and treated animals. The majority were seen in the globus pallidus, occasionally in the putamen and once in the nearby caudate nucleus. These structures were partially ferruginated and also partially calcified. They appeared to arise in relation to small vessels. They are part of the naturally occurring background pathology of several species of non-human primates and the incidence in this study (3/8 control and 5/8 treated) was approximately what might be expected from reports in the literature. Mineralized bodies of the basal ganglia of primates represent a spontaneous lesion with a characteristic distribution. They may cause confusion in interpretation of toxicological studies if their natural occurrence is not appreciated.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bob Jacobs ◽  
Heather Rally ◽  
Catherine Doyle ◽  
Lester O’Brien ◽  
Mackenzie Tennison ◽  
...  

Abstract The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.


2021 ◽  
pp. practneurol-2021-002942
Author(s):  
Yue Hui Lau ◽  
Ahmad Shahir Mawardi ◽  
Norzaini Rose Zain ◽  
Shanthi Viswanathan

A 33-year-old man with a history of chronic toluene abuse through glue sniffing, developed tremors, cerebellar signs and cognitive decline. MR scan of the brain showed global cerebral and cerebellar atrophy with symmetrical T2-weighted hypointensities in the basal ganglia, thalami and midbrain. After stopping glue sniffing, his tremors, ataxia of gait, speech and cognition partially improved. Early recognition and intervention of toluene-induced leukodystrophy could prevent ongoing morbidity and premature mortality.


2003 ◽  
Vol 13 (02) ◽  
pp. 111-118
Author(s):  
Jairo Diniz Filho ◽  
Teresa B. Ludermir

Neuronal groups projecting widely in the brain are being experimentally associated to attention and mood changes. Those groups are known to exert a modulatory effect over other larger groups. On the other hand, some people think of the brain functions as being performed by specialized modular systems. In this work, we propose an architecture of modular nature to explore a particular decision process. We show the importance of the modulatory effect of a special evaluation segment in that process.


2020 ◽  
Author(s):  
Ethan Bromberg-Martin ◽  
Ilya E. Monosov

Humans and animals navigate uncertain environments by seeking information about the future. Remarkably, we often seek information even when it has no instrumental value for aiding our decisions – as if the information is a source of value in its own right. In recent years, there has been a flourishing of research into these non-instrumental information preferences and their implementation in the brain. Individuals value information about uncertain future rewards, and do so for multiple reasons, including valuing resolution of uncertainty and overweighting desirable information. The brain motivates this information seeking by tapping into some of the same circuitry as primary rewards like food and water. However, it also employs cortex and basal ganglia circuitry that predicts and values information as distinct from primary reward. Uncovering how these circuits cooperate will be fundamental to understanding information seeking and motivated behavior as a whole, in our increasingly complex and information-rich world.


Sign in / Sign up

Export Citation Format

Share Document