scholarly journals Direct interaction of PIWI and DEPS-1 is essential for piRNA function and condensate ultrastructure inCaenorhabditis elegans

2019 ◽  
Author(s):  
KM Suen ◽  
F Braukmann ◽  
R Butler ◽  
D Bensaddek ◽  
A Akay ◽  
...  

SummaryMembraneless organelles are platforms for many aspects of RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. To address this question, we investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule inCaenorhabditis elegans. Proteomic analysis of the PIWI protein PRG-1 revealed an interaction with the constitutive P granule protein DEPS-1. Furthermore we identified a novel motif on DEPS-1, PBS, which interacts directly with the Piwi domain of PRG-1. This protein complex forms intertwining ultrastructures to build elongated condensatesin vivo. These sub-organelle ultrastructures depend on the Piwi-interacting motif of DEPS-1 and mediate piRNA function. Additionally, we identify a novel interactor of DEPS-1, EDG-1, which is required for DEPS-1 condensates to form correctly. We show that DEPS-1 is not required for piRNA biogenesis but piRNA function:deps-1mutants fail to produce the secondary endo-siRNAs required for the silencing of piRNA targets. Our study reveals how specific protein-protein interactions drive the spatial organisation and function of small RNA pathways within membraneless organelles.

1995 ◽  
Vol 15 (10) ◽  
pp. 5214-5225 ◽  
Author(s):  
A D Catling ◽  
H J Schaeffer ◽  
C W Reuter ◽  
G R Reddy ◽  
M J Weber

Mammalian MEK1 and MEK2 contain a proline-rich (PR) sequence that is absent both from the yeast homologs Ste7 and Byr1 and from a recently cloned activator of the JNK/stress-activated protein kinases, SEK1/MKK4. Since this PR sequence occurs in MEKs that are regulated by Raf family enzymes but is missing from MEKs and SEKs activated independently of Raf, we sought to investigate the role of this sequence in MEK1 and MEK2 regulation and function. Deletion of the PR sequence from MEK1 blocked the ability of MEK1 to associate with members of the Raf family and markedly attenuated activation of the protein in vivo following growth factor stimulation. In addition, this sequence was necessary for efficient activation of MEK1 in vitro by B-Raf but dispensable for activation by a novel MEK1 activator which we have previously detected in fractionated fibroblast extracts. Furthermore, we found that a phosphorylation site within the PR sequence of MEK1 was required for sustained MEK1 activity in response to serum stimulation of quiescent fibroblasts. Consistent with this observation, we observed that MEK2, which lacks a phosphorylation site at the corresponding position, was activated only transiently following serum stimulation. Finally, we found that deletion of the PR sequence from a constitutively activated MEK1 mutant rendered the protein nontransforming in Rat1 fibroblasts. These observations indicate a critical role for the PR sequence in directing specific protein-protein interactions important for the activation, inactivation, and downstream functioning of the MEKs.


2012 ◽  
Vol 58 (11) ◽  
pp. 1241-1257 ◽  
Author(s):  
Roberto Velasco-García ◽  
Rocío Vargas-Martínez

Many of the functions fulfilled by proteins in the cell require specific protein–protein interactions (PPI). During the last decade, the use of high-throughput experimental technologies, primarily based on the yeast 2-hybrid system, generated extensive data currently located in public databases. This information has been used to build interaction networks for different species. Unfortunately, due to the nature of the yeast 2-hybrid system, these databases contain many false positives and negatives, thus they require purging. A method for confirming these PPI is to test them using a technique that operates in vivo and detects binary PPI. This article comprises an overview of the study of PPI and describes the main techniques that have been used to identify bacterial PPI, prioritizing those that can be used for their verification, and it also mentions a number of PPI that have been identified or confirmed using these methods.


2004 ◽  
Vol 377 (3) ◽  
pp. 693-700 ◽  
Author(s):  
Jeremy W. PECK ◽  
Emma T. BOWDEN ◽  
Peter D. BURBELO

Snf7p (sucrose non-fermenting) and Vps20p (vacuolar protein-sorting) are small coil-coiled proteins involved in yeast MVB (multivesicular body) structure, formation and function. In the present study, we report the identification of three human homologues of yeast Snf7p, designated hSnf7-1, hSnf7-2 and hSnf7-3, and a single human Vps20p homologue, designated hVps20, that may have similar roles in humans. Immunofluorescence studies showed that hSnf7-1 and hSnf7-3 localized in large vesicular structures that also co-localized with late endosomal/lysosomal structures induced by overexpressing an ATPase-defective Vps4-A mutant. In contrast, overexpressed hVps20 showed a typical endosomal membrane-staining pattern, and co-expression of hVps20 with Snf7-1 dispersed the large Snf7-staining vesicles. Interestingly, overexpression of both hSnf7 and hVps20 proteins induced a post-endosomal defect in cholesterol sorting. To explore possible protein–protein interactions involving hSnf7 proteins, we used information from yeast genomic studies showing that yeast Snf7p can interact with proteins involved in MVB function. Using a glutathione S-transferase-capture approach with several mammalian homologues of such yeast Snf7p-interacting proteins, we found that all three hSnf7s interacted with mouse AIP1 [ALG-2 (apoptosis-linked gene 2) interacting protein 1], a mammalian Bro1p [BCK1 (bypass of C kinase)-like resistance to osmotic shock]-containing protein involved in cellular vacuolization and apoptosis. Whereas mapping experiments showed that the N-terminus of AIP1 containing both a Bro1 and an α-helical domain were required for interaction with hSnf7-1, Snf7-1 did not interact with another human Bro1-containing molecule, rhophilin-2. Co-immunoprecipitation experiments confirmed the in vivo interaction of hSnf7-1 and AIP1. Additional immunofluorescence experiments showed that hSnf7-1 recruited cytosolic AIP1 to the Snf7-induced vacuolar-like structures. Together these results suggest that mammalian Vps20, AIP1 and Snf7 proteins, like their yeast counterparts, play roles in MVB function.


2018 ◽  
Author(s):  
Priya Amin ◽  
Sadhbh Soper Ní Chafraidh ◽  
Ioanna Leontiou ◽  
Kevin G. Hardwick

AbstractChemical-induced dimerisation (CID) uses small molecules to control specific protein-protein interactions. Here, we employ CID dependent on the plant hormone abscisic acid (ABA) to reconstitute spindle checkpoint signalling in fission yeast. The spindle checkpoint signal usually originates at unattached or inappropriately attached kinetochores. These are complex, multi-protein structures with several important functions. To bypass kinetochore complexity, we take a reductionist approach to study checkpoint signalling. We generate a synthetic checkpoint arrest ectopically by inducing hetero-dimerisation of the checkpoint proteins Mph1Mps1 and Spc7KNL1. These proteins are engineered such that they can’t localise to kinetochores, and only form a complex in the presence of ABA. Using this novel assay we are able to checkpoint arrest a synchronous population of cells within 30 minutes of ABA addition. This assay allows for detailed genetic dissection of checkpoint activation and importantly it also provides a valuable tool for studying checkpoint silencing. To analyse silencing of the checkpoint and the ensuing mitotic exit, we simply wash-out the ABA from arrested cells. We show here that silencing is critically-dependent on PP1Dis2 recruitment to Mph1Mps1-Spc7KNL1 signalling platforms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joël Caillet ◽  
Bruno Baron ◽  
Irina V. Boni ◽  
Célia Caillet-Saguy ◽  
Eliane Hajnsdorf

Abstract Hfq is a RNA-binding protein that plays a pivotal role in the control of gene expression in bacteria by stabilizing sRNAs and facilitating their pairing with multiple target mRNAs. It has already been shown that Hfq, directly or indirectly, interacts with many proteins: RNase E, Rho, poly(A)polymerase, RNA polymerase… In order to detect more Hfq-related protein-protein interactions we have used two approaches, TAP-tag combined with RNase A treatment to access the role of RNA in these complexes, and protein-protein crosslinking, which freezes protein-protein complexes formed in vivo. In addition, we have performed microscale thermophoresis to evaluate the role of RNA in some of the complexes detected and used far-western blotting to confirm some protein-protein interactions. Taken together, the results show unambiguously a direct interaction between Hfq and EF-Tu. However a very large number of the interactions of proteins with Hfq in E. coli involve RNAs. These RNAs together with the interacting protein, may play an active role in the formation of Hfq-containing complexes with previously unforeseen implications for the riboregulatory functions of Hfq.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Chitra Mohan ◽  
Lisa M Kim ◽  
Nicole Hollar ◽  
Tailai Li ◽  
Eric Paulissen ◽  
...  

VivosX is an in vivo disulfide crosslinking approach that utilizes a pair of strategically positioned cysteines on two proteins to probe physical interactions within cells. Histone H2A.Z, which often replaces one or both copies of H2A in nucleosomes downstream of promoters, was used to validate VivosX. Disulfide crosslinks between cysteine-modified H2A.Z and/or H2A histones within nucleosomes were induced using a membrane-permeable oxidant. VivosX detected different combinations of H2A.Z and H2A within nucleosomes in yeast cells. This assay correctly reported the change in global H2A.Z occupancy previously observed when the deposition and eviction pathways of H2A.Z were perturbed. Homotypic H2A.Z/H2A.Z (ZZ) nucleosomes accumulated when assembly of the transcription preinitiation complex was blocked, revealing that the transcription machinery preferentially disassembles ZZ nucleosomes. VivosX works in human cells and distinguishes ZZ nucleosomes with one or two ubiquitin moieties, demonstrating that it can be used to detect protein-protein interactions inside cells from different species.


Development ◽  
1998 ◽  
Vol 125 (5) ◽  
pp. 937-947 ◽  
Author(s):  
C. Mailhos ◽  
S. Andre ◽  
B. Mollereau ◽  
A. Goriely ◽  
A. Hemmati-Brivanlou ◽  
...  

Goosecoid (Gsc) is a homeodomain protein expressed in the organizer region of vertebrate embryos. Its Drosophila homologue, D-Gsc, has been implicated in the formation of the Stomatogastric Nervous System. Although there are no apparent similarities between the phenotypes of mutations in the gsc gene in flies and mice, all known Gsc proteins can rescue dorsoanterior structures in ventralized Xenopus embryos. We describe how D-Gsc behaves as a transcriptional repressor in Drosophila cells, acting through specific palindromic HD binding sites (P3K). D-Gsc is a ‘passive repressor’ of activator homeoproteins binding to the same sites and an ‘active repressor’ of activators binding to distinct sites. In addition, D-Gsc is able to strongly repress transcription activated by Paired-class homeoproteins through P3K, via specific protein-protein interactions in what we define as ‘interactive repression’. This form of repression requires the short conserved GEH/eh-1 domain, also present in the Engrailed repressor. Although the GEH/eh-1 domain is necessary for rescue of UV-ventralized Xenopus embryos, it is dispensable for ectopic induction of Xlim-1 expression, demonstrating that this domain is not required for all Gsc functions in vivo. Interactive repression may represent specific interactions among Prd-class homeoproteins, several of which act early during development of invertebrate and vertebrate embryos.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109875 ◽  
Author(s):  
Matej Zábrady ◽  
Vendula Hrdinová ◽  
Bruno Müller ◽  
Udo Conrad ◽  
Jan Hejátko ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1578
Author(s):  
Tao Shi ◽  
Paulien E. Polderman ◽  
Marc Pagès-Gallego ◽  
Robert M. van Es ◽  
Harmjan R. Vos ◽  
...  

Reversible cysteine oxidation plays an essential role in redox signaling by reversibly altering protein structure and function. Cysteine oxidation may lead to intra- and intermolecular disulfide formation, and the latter can drastically stabilize protein–protein interactions in a more oxidizing milieu. The activity of the tumor suppressor p53 is regulated at multiple levels, including various post-translational modification (PTM) and protein–protein interactions. In the past few decades, p53 has been shown to be a redox-sensitive protein, and undergoes reversible cysteine oxidation both in vitro and in vivo. It is not clear, however, whether p53 also forms intermolecular disulfides with interacting proteins and whether these redox-dependent interactions contribute to the regulation of p53. In the present study, by combining (co-)immunoprecipitation, quantitative mass spectrometry and Western blot we found that p53 forms disulfide-dependent interactions with several proteins under oxidizing conditions. Cysteine 277 is required for most of the disulfide-dependent interactions of p53, including those with 14-3-3q and 53BP1. These interaction partners may play a role in fine-tuning p53 activity under oxidizing conditions.


2021 ◽  
Vol 118 (32) ◽  
pp. e2023360118
Author(s):  
Andrew Wheat ◽  
Clinton Yu ◽  
Xiaorong Wang ◽  
Anthony M. Burke ◽  
Ilan E. Chemmama ◽  
...  

Defining protein–protein interactions (PPIs) in their native environment is crucial to understanding protein structure and function. Cross-linking–mass spectrometry (XL-MS) has proven effective in capturing PPIs in living cells; however, the proteome coverage remains limited. Here, we have developed a robust in vivo XL-MS platform to facilitate in-depth PPI mapping by integrating a multifunctional MS-cleavable cross-linker with sample preparation strategies and high-resolution MS. The advancement of click chemistry–based enrichment significantly enhanced the detection of cross-linked peptides for proteome-wide analyses. This platform enabled the identification of 13,904 unique lysine–lysine linkages from in vivo cross-linked HEK 293 cells, permitting construction of the largest in vivo PPI network to date, comprising 6,439 interactions among 2,484 proteins. These results allowed us to generate a highly detailed yet panoramic portrait of human interactomes associated with diverse cellular pathways. The strategy presented here signifies a technological advancement for in vivo PPI mapping at the systems level and can be generalized for charting protein interaction landscapes in any organisms.


Sign in / Sign up

Export Citation Format

Share Document