scholarly journals Performance of bitumen coating sheet using biomass pyrolysis oil

2019 ◽  
Author(s):  
Yanru Ren ◽  
Lei Zhang ◽  
Wenfeng Duan ◽  
Jia Guo ◽  
Zhongqiang Han ◽  
...  

ABSTRACTThe “green” production of bitumen has raised increasing interest in recent years to reduce the environmental, energy and petro-based concerns. Bio-oil, prepared by biomass pyrolysis, can be used as substitute for petro-based bitumen in bitumen or bitumen-based coatings, for its similar properties of good adhesion and anti-corrosion characteristics. Although biomass is a renewable and widespread chemicals resource, its value-added utilization is still difficult. Several studies have qualitatively demonstrated the use of bio-bitumen in practical applications. The present study investigates the effects and properties and the incorporation of bio-bitumen shown to improve the performance of traditional petro-bitumen to some extent. Bio-bitumen was prepared from biomass pyrolysis oil and applied to self-adhesive and doped hot-melt sheets. Resulting physical properties demonstrate that bio-bitumen is a potential substitute in bitumen coating sheet.IMPLICATIONSThis paper is intended to verify the effect of pyrolyzed bio-oil from wheat straw on the performance of bitumen, as well as the feasibility of application in the coating sheet. Up to now, the research on bio-bitumen is mainly in pavement bitumen. In the present research, bio-bitumen was applied to the coating sheet in different proportions. Interestingly, the prepared coating sheet exhibited higher adhesion. Other performances, such as temperature stability, mechanical strength and temperature flexibility of coating sheet showed improvement in the presence of bio- oil, which indicated the suitability of bio-oil in coating sheet bitumen.

Author(s):  
Adewale George Adeniyi ◽  
Kevin Shegun Otoikhian ◽  
Joshua O. Ighalo

Abstract The steam reforming of biomass pyrolysis oil is a well-established means of producing the more useful bio-hydrogen. Bio-oil has a comparatively low heating value, incomplete volatility and acidity, hence upgrading to a more useful product is required. Over the years, the experimental conditions of the process have been studied extensively in the domain of catalysis and process variable optimisation. Sorption enhancement is now being applied to the system to improve the purity of the hydrogen stream. Lifecycle analyses has revealed that bio-hydrogen offers considerable reductions in energy consumption compared to fossil fuel-derived hydrogen. Also, green-house-gas savings from the process can also be as high as 54.5 %. Unfortunately, techno-economic analyses have elucidated that bio-hydrogen production is still hampered by high production costs. Research endeavours in steam reforming of biomass bio-oil is done with an eye for developing added value products that can complement, substitute (and one day replace) fossil fuels whilst ameliorating the global warming menace.


RSC Advances ◽  
2020 ◽  
Vol 10 (22) ◽  
pp. 12721-12729
Author(s):  
Peng Fu ◽  
Andong Zhang ◽  
Shan Luo ◽  
Weiming Yi ◽  
Yuchun Zhang

Evolution of H2, CO, CO2 and CH4 during catalytic steam reforming of the bio-oil and its different derivatives was revealed.


2012 ◽  
Vol 174-177 ◽  
pp. 1429-1432 ◽  
Author(s):  
Jiang Ping Yi ◽  
Ji Zong Zhang ◽  
Si Xu Yao ◽  
Jian Min Chang ◽  
Ben Li

Three kinds of bio-oil-phenol-formaldehyde (BPF) resins were prepared which contained 30 wt% replacement of phenol with bio-oil derived from poplar, larch and bamboo. Main component of different pyrolysis bio-oil, physical properties of different BPF resins and their plywood specimens were investigated. The results show that phenolics in bio-oil derived from poplar, larch and bamboo are 13.8653%, 14.7529% and 10.3987%. All the experimental BPF resins have similar physical properties, which comply with GB/T 14732-2006. The performance of the plywood specimens bonded with different BPF resins were larch-BPF > poplar-BPF > bamboo-BPF, all of which could achieve the demands of GB/T 9846-2004.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 799 ◽  
Author(s):  
Zahra Echresh Zadeh ◽  
Ali Abdulkhani ◽  
Omar Aboelazayem ◽  
Basudeb Saha

Pyrolysis process has been considered to be an efficient approach for valorization of lignocellulosic biomass into bio-oil and value-added chemicals. Bio-oil refers to biomass pyrolysis liquid, which contains alkanes, aromatic compounds, phenol derivatives, and small amounts of ketone, ester, ether, amine, and alcohol. Lignocellulosic biomass is a renewable and sustainable energy resource for carbon that is readily available in the environment. This review article provides an outline of the pyrolysis process including pretreatment of biomass, pyrolysis mechanism, and process products upgrading. The pretreatment processes for biomass are reviewed including physical and chemical processes. In addition, the gaps in research and recommendations for improving the pretreatment processes are highlighted. Furthermore, the effect of feedstock characterization, operating parameters, and types of biomass on the performance of the pyrolysis process are explained. Recent progress in the identification of the mechanism of the pyrolysis process is addressed with some recommendations for future work. In addition, the article critically provides insight into process upgrading via several approaches specifically using catalytic upgrading. In spite of the current catalytic achievements of catalytic pyrolysis for providing high-quality bio-oil, the production yield has simultaneously dropped. This article explains the current drawbacks of catalytic approaches while suggesting alternative methodologies that could possibly improve the deoxygenation of bio-oil while maintaining high production yield.


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Azusa Togo ◽  
Yukiko Enomoto ◽  
Akio Takemura ◽  
Tadahisa Iwata

AbstractPolysaccharides are promising renewable alternatives to petroleum-based plastics, and are high-value-added materials in various industries. In this work, we synthesized dextran (α-1,6-glucan) ester derivatives substituting acyl groups with different carbon numbers from acetate to laurate. We found that the thermal stability of dextran was improved by esterification. Moreover, using differential scanning calorimetry and X-ray diffraction, we revealed that dextran ester derivatives were amorphous. Self-standing, transparent, solvent-cast films of dextran ester derivatives were prepared. Dextran ester derivatives adhered to various materials, including polyvinyl alcohol (PVA) films, wood, glass, and aluminum. In addition, the adhesive interfaces were transparent, which is important for practical applications. The adhesive strength for PVA films increased with concentration, exceeding the breaking strength of the PVA film at 0.3 g/mL. Moreover, dextran valerate and dextran hexanoate behaved as hot-melt-type adhesives. These results demonstrate the potential of dextran ester derivatives as biomass-based adhesives.


Author(s):  
Junmeng Cai ◽  
Md. Maksudur Rahman ◽  
Shukai Zhang ◽  
Manobendro Sarker ◽  
Xingguang Zhang ◽  
...  
Keyword(s):  

Author(s):  
Andrew N. Amenaghawon ◽  
Chinedu L. Anyalewechi ◽  
Charity O. Okieimen ◽  
Heri Septya Kusuma

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 23
Author(s):  
Wenli Wang ◽  
Yichen Liu ◽  
Yue Wang ◽  
Longfei Liu ◽  
Changwei Hu

The thermal degradation of lignin for value-added fuels and chemicals is important for environment improvement and sustainable development. The impact of pretreatment and catalysis of Ni(NO3)2 on the pyrolysis behavior of organsolv lignin were studied in the present work. Samples were pyrolyzed at 500 ∘C with an upward fixed bed, and the characteristics of bio-oil were determined. After pretreatment by Ni(NO3)2, the yield of monophenols increased from 23.3 wt.% to 30.2 wt.% in “Ni-washed” and decreased slightly from 23.3 wt.% to 20.3 wt.% in “Ni-unwashed”. Meanwhile, the selective formation of vinyl-monophenols was promoted in “Ni-unwashed”, which indicated that the existence of nickel species promoted the dehydration of C-OH and breakage of C-C in pyrolysis. In comparison with “Water”, HHV of bio-oil derived from “Ni-unwashed” slightly increased from 27.94 mJ/kg to 28.46 mJ/kg, suggesting that the lowering of oxygen content in bio-oil is associated with improved quality. Furthermore, the content of H2 in gas products dramatically increased from 2.0% to 7.6% and 17.1%, respectively.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Chaofeng Li ◽  
Xiaofeng Lin ◽  
Xing Ling ◽  
Shuo Li ◽  
Hao Fang

Abstract Background The biomanufacturing of d-glucaric acid has attracted increasing interest because it is one of the top value-added chemicals produced from biomass. Saccharomyces cerevisiae is regarded as an excellent host for d-glucaric acid production. Results The opi1 gene was knocked out because of its negative regulation on myo-inositol synthesis, which is the limiting step of d-glucaric acid production by S. cerevisiae. We then constructed the biosynthesis pathway of d-glucaric acid in S. cerevisiae INVSc1 opi1Δ and obtained two engineered strains, LGA-1 and LGA-C, producing record-breaking titers of d-glucaric acid: 9.53 ± 0.46 g/L and 11.21 ± 0.63 g/L d-glucaric acid from 30 g/L glucose and 10.8 g/L myo-inositol in fed-batch fermentation mode, respectively. However, LGA-1 was preferable because of its genetic stability and its superior performance in practical applications. There have been no reports on d-glucaric acid production from lignocellulose. Therefore, the biorefinery processes, including separated hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF) and consolidated bioprocessing (CBP) were investigated and compared. CBP using an artificial microbial consortium composed of Trichoderma reesei (T. reesei) Rut-C30 and S. cerevisiae LGA-1 was found to have relatively high d-glucaric acid titers and yields after 7 d of fermentation, 0.54 ± 0.12 g/L d-glucaric acid from 15 g/L Avicel and 0.45 ± 0.06 g/L d-glucaric acid from 15 g/L steam-exploded corn stover (SECS), respectively. In an attempt to design the microbial consortium for more efficient CBP, the team consisting of T. reesei Rut-C30 and S. cerevisiae LGA-1 was found to be the best, with excellent work distribution and collaboration. Conclusions Two engineered S. cerevisiae strains, LGA-1 and LGA-C, with high titers of d-glucaric acid were obtained. This indicated that S. cerevisiae INVSc1 is an excellent host for d-glucaric acid production. Lignocellulose is a preferable substrate over myo-inositol. SHF, SSF, and CBP were studied, and CBP using an artificial microbial consortium of T. reesei Rut-C30 and S. cerevisiae LGA-1 was found to be promising because of its relatively high titer and yield. T. reesei Rut-C30 and S. cerevisiae LGA-1were proven to be the best teammates for CBP. Further work should be done to improve the efficiency of this microbial consortium for d-glucaric acid production from lignocellulose.


Sign in / Sign up

Export Citation Format

Share Document