scholarly journals Response of Bat Activity to Land-Cover and Land-Use Change in Savannas is Scale-, Season-, and Guild-Specific

2019 ◽  
Author(s):  
Julie Teresa Shapiro ◽  
Ara Monadjem ◽  
Timo Röder ◽  
Robert A. McCleery

AbstractTropical savannas are biomes of global importance that are under severe pressure from anthropogenic change, including land-cover and land-use change. Bats, the second-most diverse group of mammals, are critical to ecosystem functioning, but may be vulnerable to such anthropogenic stresses. However, there is little information on the response of savanna bats to land-cover and land-use change, especially in Africa. This limits our ability to develop conservation strategies for bats and maintain the ecosystem functions and services they provide in this biome. Using acoustic monitoring, we measured how guild-specific (aerial, edge, and clutter forager) bat activity responded to both fine-scale metrics of vegetation structure and landscape-scale metrics of land-cover composition and configuration across the wet and dry seasons in a savanna in southern Africa undergoing rapid land-cover and land-use change. We found that all three guilds responded more strongly to landscape metrics than fine-scale vegetation structure, although the specific metrics varied between guilds. Aerial and edge bats responded most strongly to the percent savanna cover and savanna fragmentation in both seasons while clutter bats responded to percent rural cover in the wet season and percent water cover in the dry. All three guilds responded more strongly to the landscape in the dry season than the wet season. Our results show it is possible to conserve bats, and the ecosystem services they can provide, in savannas undergoing anthropogenic land-use and land-cover change but strategies to do so must consider foraging guild, large spatial scales, and seasonal variation in bat activity.HighlightsBats in savannas respond to land-cover and land-use change on large spatial scalesLandscape had a greater influence on bat activity in the dry season than the wetAerial and edge forager activity responded to savanna cover and fragmentationClutter forager activity was best explained by rural and water coverMinimizing fragmentation and maintaining water promotes bat activity in modified savannas

2021 ◽  
Author(s):  
Xiao Shu ◽  
Weibo Wang ◽  
Mingyong Zhu ◽  
Jilei Xu ◽  
Xiang Tan ◽  
...  

Abstract The coupling between land use/landscape pattern and water quality in river system varies across different spatial and temporal scales. It is important to understand the association between water quality and land use/landscape pattern across different spatial and temporal scales for the protection of water resources. Here, we measured seasonal water quality at 12 sub-basins in the upper reaches of the Han River (UHR) between 2010 and 2018. We conducted factor analysis and redundancy analysis to determine the links between land use and water quality at multiple spatial scales and to identify the main factors influencing water quality. We found that the concentration of nutrients, including total nitrogen, total phosphorus, nitrate-N, and ammonium-N were higher during the wet season than the dry season. Total nitrogen was identified as the main driver of nutrient pollution of UHR, whereas total phosphorus was identified as another potential nutrient pollutant. We also found that water quality parameters had a stronger related to land use types over the wet season than the dry season. Croplands and urban lands increased phosphorus concentrations of river water, whereas forest and grass lands decreased the nitrogen concentrations of river water at the sub-basins scale. Land use at riparian zone scales better explained variations in water quality than land use at sub-basin scales. The explained variations in landscape metrics were generally higher over the dry season compared to that over the wet season. The largest patch index and Shannon's diversity index were the main predictors of river water quality in UHR.


2017 ◽  
Vol 21 (5) ◽  
pp. 2341-2360 ◽  
Author(s):  
Meine van Noordwijk ◽  
Lisa Tanika ◽  
Betha Lusiana

Abstract. Watersheds buffer the temporal pattern of river flow relative to the temporal pattern of rainfall. This ecosystem service is inherent to geology and climate, but buffering also responds to human use and misuse of the landscape. Buffering can be part of management feedback loops if salient, credible and legitimate indicators are used. The flow persistence parameter Fp in a parsimonious recursive model of river flow (Part 1, van Noordwijk et al., 2017) couples the transmission of extreme rainfall events (1 − Fp), to the annual base-flow fraction of a watershed (Fp). Here we compare Fp estimates from four meso-scale watersheds in Indonesia (Cidanau, Way Besai and Bialo) and Thailand (Mae Chaem), with varying climate, geology and land cover history, at a decadal timescale. The likely response in each of these four to variation in rainfall properties (including the maximum hourly rainfall intensity) and land cover (comparing scenarios with either more or less forest and tree cover than the current situation) was explored through a basic daily water-balance model, GenRiver. This model was calibrated for each site on existing data, before being used for alternative land cover and rainfall parameter settings. In both data and model runs, the wet-season (3-monthly) Fp values were consistently lower than dry-season values for all four sites. Across the four catchments Fp values decreased with increasing annual rainfall, but specific aspects of watersheds, such as the riparian swamp (peat soils) in Cidanau reduced effects of land use change in the upper watershed. Increasing the mean rainfall intensity (at constant monthly totals for rainfall) around the values considered typical for each landscape was predicted to cause a decrease in Fp values by between 0.047 (Bialo) and 0.261 (Mae Chaem). Sensitivity of Fp to changes in land use change plus changes in rainfall intensity depends on other characteristics of the watersheds, and generalisations made on the basis of one or two case studies may not hold, even within the same climatic zone. A wet-season Fp value above 0.7 was achievable in forest–agroforestry mosaic case studies. Inter-annual variability in Fp is large relative to effects of land cover change. Multiple (5–10) years of paired-plot data would generally be needed to reject no-change null hypotheses on the effects of land use change (degradation and restoration). Fp trends over time serve as a holistic scale-dependent performance indicator of degrading/recovering watershed health and can be tested for acceptability and acceptance in a wider social-ecological context.


2016 ◽  
Author(s):  
Reinhard Prestele ◽  
Almut Arneth ◽  
Alberte Bondeau ◽  
Nathalie de Noblet-Ducoudré ◽  
Thomas A. M. Pugh ◽  
...  

Abstract. Land-use and land-cover change (LULCC) represents one of the key drivers of global environmental change. However, the processes and drivers of anthropogenic land-use activity are still overly simplistically implemented in Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESMs), whose published results are used in major assessments of processes and impacts of global environmental change such as the reports of the Intergovernmental Panel on Climate Change (IPCC). In the absence of coupled models of climate, land use and biogeochemical cycles to explore land use – climate interactions across spatial scales, information on LULCC is currently provided as exogenous data from the land-use change modules of Integrated Assessment Models (IAMs) to ESMs and DGVMs, while data from dedicated land-use change models (LUCMs) are rarely considered. In this article, we discuss major uncertainties and existing shortcomings of current implementation strategies originating in both LULCC data-provider and LULCC data-user communities. We identify, based on literature review and the analysis of empirical and modeled LULCC data, three major challenges related to LULCC representation, which are currently not or insufficiently accounted for: (1) provision of consistent, harmonized LULCC time series spanning from historical reconstructions to future projections while accounting for uncertainties due to different land-use modeling approaches, (2) accounting for sub-grid processes and bi-directional changes (gross changes) across spatial scales and (3) the allocation strategy of LULCC at the grid cell level in ESMs and DGVMs. Based on these three challenges, we discuss the reasons that hamper the development of implementation strategies that sufficiently account for uncertainties in the land-use modeling process and conclude that both providers and users of LULCC data products often miss appropriate knowledge of the requirements and constraints of one another’s models, thus leading to large discrepancies between the representation of LULCC data and processes in both communities. We propose to focus future research on the joint development and evaluation of enhanced LULCC time series, which account for the diversity of LULCC modeling and increasingly include empirically based information about sub-grid processes and land-use transition trajectories.


Oceans ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 315-329
Author(s):  
Antoine Collin ◽  
Mark Andel ◽  
David Lecchini ◽  
Joachim Claudet

Shallow coral reefs ensure a wide portfolio of ecosystem services, from fish provisioning to tourism, that support more than 500 million people worldwide. The protection and sustainable management of these pivotal ecosystems require fine-scale but large-extent mapping of their 3D composition. The sub-metre spaceborne imagery can neatly produce such an expected product using multispectral stereo-imagery. We built the first 3D land-sea coral reefscape mapping using the 0.3 m superspectral WorldView-3 stereo-imagery. An array of 13 land use/land cover and sea use/sea cover habitats were classified using sea-, ground- and air-truth data. The satellite-derived topography and bathymetry reached vertical accuracies of 1.11 and 0.89 m, respectively. The value added of the eight mid-infrared (MIR) channels specific to the WorldView-3 was quantified using the classification overall accuracy (OA). With no topobathymetry, the best combination included the eight-band optical (visible + near-infrared) and the MIR8, which boosted the basic blue-green-red OA by 9.58%. The classes that most benefited from this MIR information were the land use “roof” and land cover “soil” classes. The addition of the satellite-derived topobathymetry to the optical+MIR1 produced the best full combination, increasing the basic OA by 9.73%, and reinforcing the “roof” and “soil” distinction.


2006 ◽  
Vol 10 (19) ◽  
pp. 1-17 ◽  
Author(s):  
Julia Pongratz ◽  
Lahouari Bounoua ◽  
Ruth S. DeFries ◽  
Douglas C. Morton ◽  
Liana O. Anderson ◽  
...  

Abstract The sensitivity of surface energy and water fluxes to recent land cover changes is simulated for a small region in northern Mato Grosso, Brazil. The Simple Biosphere Model (SiB2) is used, driven by biophysical parameters derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) at 250-m resolution, to compare the effects of different land conversion types. The mechanisms through which changes in vegetation alter surface fluxes of energy, momentum, water, and carbon are analyzed for both wet and dry seasons. It is found that morphological changes contribute to warming and drying of the atmosphere while physiological changes, particularly those associated with a plant’s photosynthetic pathway, counterbalance or exacerbate the warming depending on the type of conversion and the season. Furthermore, this study’s results indicate that initial clearing of evergreen and transition forest to bare ground increases canopy temperature by up to 1.7°C. For subsequent land use such as pasture or cropland, the largest effect is seen for the conversion of evergreen forest to C3 cropland during the wet season, with a 21% decrease of the latent heat flux and 0.4°C increase in canopy temperature. The secondary conversion of pasture to cropland resulted in slight warming and drying during the wet season driven mostly by the change in carbon pathway from C4 to C3. For all conversions types, the daily temperature range is amplified, suggesting that plants replacing forest clearing require more temperature tolerance than the trees they replace. The results illustrate that the effect of deforestation on climate depends not only on the overall extent of clearing but also on the subsequent land use type.


2011 ◽  
Vol 11 (5) ◽  
pp. 15469-15495 ◽  
Author(s):  
S. Wu ◽  
L. J. Mickley ◽  
J. O. Kaplan ◽  
D. J. Jacob

Abstract. The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21st century, we performed a series of model experiments combining a general circulation model with a dynamic global vegetation model and an atmospheric chemical-transport model. Our results indicate that climate- and CO2-induced changes in vegetation composition and density could lead to decreases in summer afternoon surface ozone of up to 10 ppb over large areas of the northern mid-latitudes. This is largely driven by the substantial increases in ozone dry deposition associated with changes in the composition of temperate and boreal forests where conifer forests are replaced by those dominated by broadleaf tree types, as well as a CO2-driven increase in vegetation density. Climate-driven vegetation changes over the period 2000–2100 lead to general increases in isoprene emissions, globally by 15 % in 2050 and 36 % in 2100. These increases in isoprene emissions result in decreases in surface ozone concentrations where the NOx levels are low, such as in remote tropical rainforests. However, over polluted regions, such as the northeastern United States, ozone concentrations are calculated to increase with higher isoprene emissions in the future. Increases in biogenic emissions also lead to higher concentrations of secondary organic aerosols, which increase globally by 10 % in 2050 and 20 % in 2100. Surface concentrations of secondary organic aerosols are calculated to increase by up to 1 μg m−3 for large areas in Eurasia. When we use a scenario of future anthropogenic land use change, we find less increase in global isoprene emissions due to replacement of higher-emitting forests by lower-emitting cropland. The global atmospheric burden of secondary organic aerosols changes little by 2100 when we account for future land use change, but both secondary organic aerosols and ozone show large regional changes at the surface.


Sign in / Sign up

Export Citation Format

Share Document