scholarly journals Sociality and Interaction Envelope Organize Visual Action Representations

2019 ◽  
Author(s):  
Leyla Tarhan ◽  
Talia Konkle

Humans observe a wide range of actions in their surroundings. How is the visual cortex organized to process this diverse input? Using functional neuroimaging, we measured brain responses while participants viewed short videos of everyday actions, then probed the structure in these responses using voxel-wise encoding modeling. Responses were well fit by feature spaces that capture the body parts involved in an action and the action’s targets (i.e. whether the action was directed at an object, another person, the actor, and space). Clustering analyses revealed five large-scale networks that summarized the voxel tuning: one related to social aspects of an action, and four related to the scale of the interaction envelope, ranging from fine-scale manipulations directed at objects, to large-scale whole-body movements directed at distant locations. We propose that these networks reveal the major representational joints in how actions are processed by visual regions of the brain.Significance StatementHow does the brain perceive other people’s actions? Prior work has established that much of the visual cortex is active when observing others’ actions. However, this activity reflects a wide range of processes, from identifying a movement’s direction to recognizing its social content. We investigated how these diverse processes are organized within the visual cortex. We found that five networks respond during action observation: one that is involved in processing actions’ social content, and four that are involved in processing agent-object interactions and the scale of the effect that these actions have on the world (its “interaction envelope”). Based on these findings, we propose that sociality and interaction envelope size are two of the major features that organize action perception in the visual cortex.


Author(s):  
Bettina Bläsing

This chapter is based on the view that dancing can promote positive feelings and energy. Even watching others dancing—on stage, in a movie, or in a club—can improve feelings of wellbeing. With reference to relevant literature, it explores how the brain links action with perception, and how technical challenges are resolved in investigating brain activity in dance observers. Early studies using neuroimaging techniques are discussed, and comparisons are drawn with recent studies in neuroaesthetics. Findings from these studies suggest that brain scientists can learn from dancers and dance spectators about action–perception coupling and the integration of movement, cognition, and emotion. Conclusions are drawn regarding how dancing, and dance viewing, stimulates the parts of our brains that are involved in whole-body motor action as well as social, communicative, and creative tasks, and can elicit positive emotional reactions, contributing to wellbeing. Implications are discussed for choreography, dance training, education, and rehabilitation.



Author(s):  
Hugues Duffau

Investigating the neural and physiological basis of language is one of the most important challenges in neurosciences. Direct electrical stimulation (DES), usually performed in awake patients during surgery for cerebral lesions, is a reliable tool for detecting both cortical and subcortical (white matter and deep grey nuclei) regions crucial for cognitive functions, especially language. DES transiently interacts locally with a small cortical or axonal site, but also nonlocally, as the focal perturbation will disrupt the entire subnetwork sustaining a given function. Thus, in contrast to functional neuroimaging, DES represents a unique opportunity to identify with great accuracy and reproducibility, in vivo in humans, the structures that are actually indispensable to the function, by inducing a transient virtual lesion based on the inhibition of a subcircuit lasting a few seconds. Currently, this is the sole technique that is able to directly investigate the functional role of white matter tracts in humans. Thus, combining transient disturbances elicited by DES with the anatomical data provided by pre- and postoperative MRI enables to achieve reliable anatomo-functional correlations, supporting a network organization of the brain, and leading to the reappraisal of models of language representation. Finally, combining serial peri-operative functional neuroimaging and online intraoperative DES allows the study of mechanisms underlying neuroplasticity. This chapter critically reviews the basic principles of DES, its advantages and limitations, and what DES can reveal about the neural foundations of language, that is, the large-scale distribution of language areas in the brain, their connectivity, and their ability to reorganize.



2015 ◽  
Vol 113 (9) ◽  
pp. 3159-3171 ◽  
Author(s):  
Caroline D. B. Luft ◽  
Alan Meeson ◽  
Andrew E. Welchman ◽  
Zoe Kourtzi

Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex.



2017 ◽  
Vol 118 (4) ◽  
pp. 2499-2506 ◽  
Author(s):  
A. Pomante ◽  
L. P. J. Selen ◽  
W. P. Medendorp

The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical—as a proxy for the tilt percept—during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s2peak acceleration, 80 cm displacement). While subjects ( n=10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model’s prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical.NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the disambiguation of linear acceleration and spatial orientation. We discuss the dynamics of these illusory percepts in terms of a dynamic Bayesian model that combines uncertainty in the vestibular signals with priors based on the natural statistics of head motion.



Author(s):  
Fernando Vidal ◽  
Francisco Ortega

The first chapter proposes to trace the distant roots of the cerebral subject to the late seventeenth century, and particularly to debates about the seat of the soul, the corpuscularian theory of matter, and John Locke’s philosophy of personal identity. In the wake of Locke, eighteenth century authors began to assert that the brain is the only part of the body we need to be ourselves. In the nineteenth century, this form of deterministic essentialism contributed to motivate research into brain structure and function, and in turn confirmed the brain-personhood nexus. Since then, from phrenology to functional neuroimaging, neuroscientific knowledge and representations have constituted a powerful support for prescriptive outlooks on the individual and society. “Neuroascesis,” as we call the business that sells programs of cerebral self-discipline, is a case in point, which this chapter also examines. It appeals to the brain and neuroscience as bases for its self-help recipes to enhance memory and reasoning, fight depression, anxiety and compulsions, improve sexual performance, achieve happiness, and even establish a direct contact with God. Yet underneath the neuro surface lie beliefs and even concrete instructions that can be traced to nineteenth-century hygiene manuals.



2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii58-iii58
Author(s):  
J Rowlinson ◽  
P McCrorie ◽  
S Smith ◽  
D Barrett ◽  
D Kim ◽  
...  

Abstract BACKGROUND Conventional oral or intravenous chemotherapy distributes drugs to the whole body whereby systemic toxicity to healthy parts of the body (e.g. bone marrow failure) limits the maximum dose that can be achieved in the brain. This presents a particular concern for CNS tumours where the blood-brain-barrier (BBB) restricts drug influx from the circulation. The ability to deliver chemotherapy locally at the tumour site offers the opportunity to target residual cancer cells post-surgery whilst minimising systemic toxicity. We have developed a poly(lactic-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) polymer matrix that forms a porous paste at room temperature when mixed with chemotherapy-containing saline, solidifying only at body temperature, with close apposition to the irregular surgical cavity. It is important that we can observe whether the drugs released from PLGA/PEG can penetrate brain parenchyma beyond the surgical resection margin at therapeutic doses. Currently the only way to measure the distribution of drugs in the body is to inject radioactive drugs into an animal. We aim to establish drug distribution parameters using label-free mass spectrometry imaging methods, prior to selection of drug formulations for clinically-relevant in vivo models. Drugs that penetrate the brain the furthest will be identified as good candidates for localised brain cancer drug delivery using PLGA/PEG paste. MATERIAL AND METHODS Diffusion rates were measured by examining the proportion of olaparib, dasatnib, carboplatin, etoposide, paclitaxel and gemcitabine at 2mg/ml concentration, which passes through 1mm slices of rat brain tissue within Franz cell chambers over a 6 hour period. The spatio-temporal distribution of label-free olaparib and dasatinib within mouse brain homogenate was quantitatively measured using innovative 3D OrbiSIMS, a hybrid time-of-flight / OrbitrapTM secondary ion mass spectrometer. RESULTS Within the Franz cell model, carboplatin and gemcitabine showed the highest diffusion rate diffusion at 16.4 and 6.53 µg/cm2/h respectively whereas olaparib, etoposide and paclitaxel were relatively poorly diffused at 1.87, 3.82 and 2.27 µg/cm2/h respectively. The minimum threshold of OrbiSIMS detection for label-free olaparib and dasatinib ions was 0.025 mg/ml and 0.2 mg/ml respectively throughout brain homogenate. CONCLUSION This study demonstrates different diffusion rates through brain tissue, between label-free chemotherapy drugs of distinct chemistries, with highest diffusion rates observed for carboplatin and gemcitabine. We also demonstrate label-free detection of olaparib and dasatinib using the innovative 3D OrbiSIMS method. These models will facilitate the rapid identification of agents most amenable for localised biomaterial-based chemotherapy delivery with high brain penetrance.



2019 ◽  
Vol 20 (11) ◽  
pp. 2765 ◽  
Author(s):  
Jihwan Myung ◽  
Mei-Yi Wu ◽  
Chun-Ya Lee ◽  
Amalia Ridla Rahim ◽  
Vuong Hung Truong ◽  
...  

The kidney harbors one of the strongest circadian clocks in the body. Kidney failure has long been known to cause circadian sleep disturbances. Using an adenine-induced model of chronic kidney disease (CKD) in mice, we probe the possibility that such sleep disturbances originate from aberrant circadian rhythms in kidney. Under the CKD condition, mice developed unstable behavioral circadian rhythms. When observed in isolation in vitro, the pacing of the master clock, the suprachiasmatic nucleus (SCN), remained uncompromised, while the kidney clock became a less robust circadian oscillator with a longer period. We find this analogous to the silencing of a strong slave clock in the brain, the choroid plexus, which alters the pacing of the SCN. We propose that the kidney also contributes to overall circadian timekeeping at the whole-body level, through bottom-up feedback in the hierarchical structure of the mammalian circadian clocks.



Author(s):  
Somayajulu D. Karamchetty

Engineers and scientists are able to understand and analyze the behavior of complex engineering systems in a wide range of critical technologies through hierarchical modeling followed by simulation of the model operation. This process results in a high fidelity integrated model as each level in the hierarchy is modeled in sufficient detail. The overall objective of this effort is to develop a sophisticated hierarchical model of the human body, followed by simulation of the model operation. In this initial research phase, the feasibility of the concept is explored and a framework for the model is described. A six-level model consisting of the whole body as a system, system of systems, organs, tissues, cells, and molecules is proposed and described. This paper explains that the human body is amenable to such hierarchical modeling and describes the benefits that can be achieved. The systems in the body deal with numerous processes: electrical, chemical, biochemical, energy conversion, transportation, pumping, sensing, communications, and so on. Control volume models for the organs in the body capture the mass and energy balance and chemical reactions. Tissue can be represented similar to structural components made of various biomaterials. Cells can be represented as a manufacturing and maintenance workforce assisted by molecular reactions. Following the representation of a healthy body, simulation runs by inserting faults and/or deficiencies in the operational parameters into the model could reveal the causes for specific diseases and illnesses. Such modeling and simulation will benefit medical, pharmaceutical, nutritional specialists, and engineers in designing, developing, and delivering products and services to enable humans to lead healthy lives.



2019 ◽  
Vol 121 (6) ◽  
pp. 2392-2400 ◽  
Author(s):  
Romy S. Bakker ◽  
Luc P. J. Selen ◽  
W. Pieter Medendorp

In daily life, we frequently reach toward objects while our body is in motion. We have recently shown that body accelerations influence the decision of which hand to use for the reach, possibly by modulating the body-centered computations of the expected reach costs. However, head orientation relative to the body was not manipulated, and hence it remains unclear whether vestibular signals contribute in their head-based sensory frame or in a transformed body-centered reference frame to these cost calculations. To test this, subjects performed a preferential reaching task to targets at various directions while they were sinusoidally translated along the lateral body axis, with their head either aligned with the body (straight ahead) or rotated 18° to the left. As a measure of hand preference, we determined the target direction that resulted in equiprobable right/left-hand choices. Results show that head orientation affects this balanced target angle when the body is stationary but does not further modulate hand preference when the body is in motion. Furthermore, reaction and movement times were larger for reaches to the balanced target angle, resembling a competitive selection process, and were modulated by head orientation when the body was stationary. During body translation, reaction and movement times depended on the phase of the motion, but this phase-dependent modulation had no interaction with head orientation. We conclude that the brain transforms vestibular signals to body-centered coordinates at the early stage of reach planning, when the decision of hand choice is computed. NEW & NOTEWORTHY The brain takes inertial acceleration into account in computing the anticipated biomechanical costs that guide hand selection during whole body motion. Whereas these costs are defined in a body-centered, muscle-based reference frame, the otoliths detect the inertial acceleration in head-centered coordinates. By systematically manipulating head position relative to the body, we show that the brain transforms otolith signals into body-centered coordinates at an early stage of reach planning, i.e., before the decision of hand choice is computed.



1990 ◽  
Vol 47 (1) ◽  
pp. 210-216 ◽  
Author(s):  
Joseph Freda ◽  
D. Gordon McDonald

In this study, we conducted a series of toxicity tests investigating the response of embryos, prestage 25 tadpoles and 3-wk old tadpoles of the leopard frog (Rana pipiens) to a wide range pf pH (4.2–4.8) and Al (0–1000 μg∙:L−1}, and to pH 6.5 with no Al present. In embryos and prestage 25 tadpoles, Al ameliorated the toxic effects of very low pH's (4.2–4.4), while becoming toxic at higher pH's (4.6–4.8). Although both embryos and prestage 25 tadpoles were killed by low pH (pH 4.2–4.4 and 4.2, respectively) and elevated Al ([Formula: see text] and [Formula: see text] Al, respectively), embryos were relatively more sensitive (i.e. higher percent mortality) to low pH, whereas prestage 25 tadpoles were relatively more sensitive to Al Three week old tadpoles did not die at any test pH (without Al) and mortality (>20%) caused by Al occurred at only pH 4.8 and 750–1000 μg∙L−1 Al. The body sodium concentrations of 3-wk old tadpoles that survived high Al exposure were depressed indicating sublethal stress. Whole body Al uptake in 3-wk old tadpoles was also elevated in water containing high concentrations of Al, but it was positively related to water pH and exposure time. This result suggests that body Al content is not an accurate indicator of Al exposure in tadpoles living in acidic, Al contaminated ponds.



Sign in / Sign up

Export Citation Format

Share Document