franz cell
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 9)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Amriani Sapra ◽  
Suwahyuni Mus ◽  
Dwirandy Dwirandy ◽  
Rifka Malluka ◽  
Nur Khairi

Background: Moringa oleifera L. leaves have analgesic activity due to their flavonoids content. These polar antioxidants compounds usually have difficulty to diffuse through the skin. Objectives: The purpose of this study was to evaluate the diffusion parameters of cream contains the lyophilized of M. oleifera leaves ethanol extract. Material and Methods: The lyophilized of M.oleifera leaves ethanol extract (5%) formulated as an o/w cream with 2% of cetyl alcohol as a stiffening agent. The physical characteristics of the cream were determined for organoleptic, homogeneity, pH, viscosity, spreadability, and type of emulsion parameters. The diffusion parameters were determined with Franz cell diffusion using the skin's snake as a membrane with 0; 10; 30; 60 and 90 minutes sampling time. Results: Physical characteristics of the cream showed that o/w as the cream type with pH, viscosity, and spreadability value were 4.72±0.03; 14.000±225 cps; and 5.7±0.20 cm, respectively. The diffusion parameter showed total flavonoids penetrate through the membrane was 360.134±0.20 µg/cm2 with flux 239,875 µg/cm2hr. Conclusions: This study showed a cream formulation that fulfills the required physical characteristics standard and can deliver active compounds to penetrate through the membrane.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 846
Author(s):  
Csilla Bartos ◽  
Piroska Szabó-Révész ◽  
Tamás Horváth ◽  
Patrícia Varga ◽  
Rita Ambrus

Nowadays, the intranasal route has become a reliable alternative route for drug administration to the systemic circulation or central nervous system. However, there are no official in vitro diffusion and dissolution tests especially for the investigation of nasal formulations. Our main goal was to study and compare a well-known and a lesser-known in vitro permeability investigation method, in order to ascertain which was suitable for the determination of drug permeability through the nasal mucosa from different formulations. The vertical diffusion cell (Franz cell) was compared with the horizontal diffusion model (Side-Bi-Side). Raw and nanonized meloxicam containing nasal dosage forms (spray, gel and powder) were tested and compared. It was found that the Side-Bi-Side cell was suitable for the investigation of spray and powder forms. In contrast, the gel was not measurable on the Side-Bi-Side cell; due to its high viscosity, a uniform distribution of the active substance could not be ensured in the donor phase. The Franz cell, designed for the analysis of semi-solid formulations, was desirable for the investigation of nasal gels. It can be concluded that the application of a horizontal cell is recommended for liquid and solid nasal preparations, while the vertical one should be used for semi-solid formulations.


2020 ◽  
Vol 8 (2) ◽  
pp. 74-80
Author(s):  
Fizza Ilyas ◽  
Muhammad Jamsahid ◽  
Irfan Bashir ◽  
Rabia Aslam ◽  
Tooba Mehboob ◽  
...  

Objective: Solubility of naproxen sodium is limited. In conventional dosage form it causes different gastro intestinal problems. To overcome these difficulties naproxen sodium loaded nano sponges were designed. Methodology: Nanosponges were formulated by using emulsion solvent evaporation technique. To obtain dispersion of nanosponges, homogenization of active drug, with specified quantities of polyvinyl alcohol, dichloromethane, ethyl cellulose and distilled, water was done. Compatibility among excipients and active drug was checked by FTIR and results didn’t show any interaction between them. 11 trial formulations were tested for poly dispersity, zeta potential, particle size and viscosity. Results: Results showed all formulations except NS9, NS10 and NS11 were in nano range. Formulation NS1 to NS6 fall in category of “mid poly dispersity” and formulation NS7 to NS11 were in the category of “very poly dispersity”. Values of Zeta potential of all formulations were in negative range -0.106 to -9.75 mV. The value of viscosity of all formulations were 0.8872. NS2 and NS3 were selected for further testing like Franz cell diffusion study, stability testing and drug loading efficiency. In Franz cell diffusion study, drug release for NS2= 89.62%, for NS3= 89.10% at 50 minutes’ time. Stability studies performed for the 21 days, NS2 and NS3 revealed slight change in percentage drug content at 4°C and 25°C, and major changes were observed at 45°C temperature. Drug loading efficiency was found in NS2= 97.659 % and for NS3= 98.901%. Conclusion: Nanosponges formulations loaded with naproxen sodium have successfully been prepared.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 988
Author(s):  
Leonardo de Souza Teixeira ◽  
Tatiana Vila Chagas ◽  
Antonio Alonso ◽  
Isabel Gonzalez-Alvarez ◽  
Marival Bermejo ◽  
...  

A major parameter controlling the extent and rate of oral drug absorption is permeability through the lipid bilayer of intestinal epithelial cells. Here, a biomimetic artificial membrane permeability assay (Franz–PAMPA Pampa) was validated using a Franz cells apparatus. Both high and low permeability drugs (metoprolol and mannitol, respectively) were used as external standards. Biomimetic properties of Franz–PAMPA were also characterized by electron paramagnetic resonance spectroscopy (EPR). Moreover, the permeation profile for eight Biopharmaceutic Classification System (BCS) model drugs cited in the FDA guidance and another six drugs (acyclovir, cimetidine, diclofenac, ibuprofen, piroxicam, and trimethoprim) were measured across Franz–PAMPA. Apparent permeability (Papp) Franz–PAMPA values were correlated with fraction of dose absorbed in humans (Fa%) from the literature. Papp in Caco-2 cells and Corti artificial membrane were likewise compared to Fa% to assess Franz–PAMPA performance. Mannitol and metoprolol Papp values across Franz–PAMPA were lower (3.20 × 10−7 and 1.61 × 10−5 cm/s, respectively) than those obtained across non-impregnated membrane (2.27 × 10−5 and 2.55 × 10−5 cm/s, respectively), confirming lipidic barrier resistivity. Performance of the Franz cell permeation apparatus using an artificial membrane showed acceptable log-linear correlation (R2 = 0.664) with Fa%, as seen for Papp in Caco-2 cells (R2 = 0.805). Data support the validation of the Franz–PAMPA method for use during the drug discovery process.


Author(s):  
Leonardo de Souza Teixeira ◽  
Tatiana Vila Chagas ◽  
Antonio Alonso ◽  
Maria Isabel Gonzalez ◽  
Marival Bermejo ◽  
...  

A major parameter controlling the extent and rate of oral drug absorption is permeability through the lipid bilayer of intestinal epithelial cells. Here, a biomimetic artificial membrane permeability assay (Franz-Bampa) was validated using Franz cells apparatus. Both high and low permeability drugs (metoprolol and mannitol, respectively) were used as external standards. Biomimetic properties of Franz-Bampa were also characterized by electron paramagnetic resonance spectroscopy (EPR). Moreover, the permeation profile for the 14 BCS class I-IV drugs cited in the FDA guidance (including other drugs as acyclovir, cimetidine, diclofenac, ibuprofen, piroxicam, and trimethoprim) were measured across Franz-Bampa. Apparent permeability (Papp) was compared to literature fraction dose absorbed in humans (Fa%). Papp in Caco-2 cells and Corti artificial membrane were likewise compared to Fa% to assess Franz-Bampa performance. Mannitol and metoprolol Papp values across Franz-Bampa were lower (3.20 x 10-7 and 1.61 x 10-5 cm/s, respectively) than those obtained across non-impregnated membrane (2.27 x 10-5 and 2.55 x 10-5 cm/s, respectively), confirming lipidic barrier resistivity. Performance of the Franz cell permeation apparatus using an artificial membrane showed similar log linear correlation (R2 = 0.664) with Fa%, as seen for Papp in Caco-2 cells (R2 = 0.805). Data support the validation of the Franz-Bampa method for use during drug discovery process.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 803
Author(s):  
Stella Zsikó ◽  
Erzsébet Csányi ◽  
Anita Kovács ◽  
Mária Budai-Szűcs ◽  
Attila Gácsi ◽  
...  

The human skin is marked as a standard by the regulatory agencies in the permeation study of dermal formulations. Artificial membranes can substitute human skin to some extent. Academicians and pharmaceutical corporations are focusing their efforts on developing standardized protocols and safe, reliable options to substitute human skin for carrying out permeability studies. Our research aim was to study the applicability of new techniques in the case of different types of dermal formulations. The skin parallel artificial membrane permeability assay (PAMPA) method and Raman mapping were compared to the gold-standard Franz cell method. A hydrogel and two types of creams were investigated as the most generally used dermal preparations. The values of the diffused drug were closer to each other in PAMPA and Franz cell measurement. The diffused amount of drug showed the same order for the different formulations. These results correlate well with the results of Raman mapping. Our conclusions suggest that all early screening examinations can be performed with model tools such as skin PAMPA supplemented with methods like Raman mapping as a semi-quantitative method.


2020 ◽  
Vol 37 (6) ◽  
Author(s):  
H.A. Farah ◽  
M.B. Brown ◽  
W.J. McAuley

Abstract Purpose The aim of this work was to evaluate whether improved topical delivery of finasteride, focussed to the hair follicles of human scalp skin could be achieved with application of short durations of heat and use of specific chemical penetration enhancers. Methods Franz cell experiments with human scalp skin were performed with a range of chemical penetration enhancers at 32°C and 45°C to simulate normal and heated conditions. Selected chemical penetration enhancers were taken forward for finite dose Franz cell studies which examined the effect of heat produced by a prototype external heating system that supplied either 20 or 30 min of additional heat over both a 24 h and a 1 h time period. Results Short durations of externally applied heat significantly increased finasteride penetration into human scalp skin after 24 h. Analysis of drug distribution in the skin after 1 h and 24 h indicated that both heat and chemical penetration enhancer selection influenced drug delivery to the hair follicles. Conclusion The use of short durations of heat in combination with specific chemical penetration enhancers was able to increase the delivery of finasteride to human scalp skin and provide focussed drug delivery to the hair follicles.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii58-iii58
Author(s):  
J Rowlinson ◽  
P McCrorie ◽  
S Smith ◽  
D Barrett ◽  
D Kim ◽  
...  

Abstract BACKGROUND Conventional oral or intravenous chemotherapy distributes drugs to the whole body whereby systemic toxicity to healthy parts of the body (e.g. bone marrow failure) limits the maximum dose that can be achieved in the brain. This presents a particular concern for CNS tumours where the blood-brain-barrier (BBB) restricts drug influx from the circulation. The ability to deliver chemotherapy locally at the tumour site offers the opportunity to target residual cancer cells post-surgery whilst minimising systemic toxicity. We have developed a poly(lactic-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) polymer matrix that forms a porous paste at room temperature when mixed with chemotherapy-containing saline, solidifying only at body temperature, with close apposition to the irregular surgical cavity. It is important that we can observe whether the drugs released from PLGA/PEG can penetrate brain parenchyma beyond the surgical resection margin at therapeutic doses. Currently the only way to measure the distribution of drugs in the body is to inject radioactive drugs into an animal. We aim to establish drug distribution parameters using label-free mass spectrometry imaging methods, prior to selection of drug formulations for clinically-relevant in vivo models. Drugs that penetrate the brain the furthest will be identified as good candidates for localised brain cancer drug delivery using PLGA/PEG paste. MATERIAL AND METHODS Diffusion rates were measured by examining the proportion of olaparib, dasatnib, carboplatin, etoposide, paclitaxel and gemcitabine at 2mg/ml concentration, which passes through 1mm slices of rat brain tissue within Franz cell chambers over a 6 hour period. The spatio-temporal distribution of label-free olaparib and dasatinib within mouse brain homogenate was quantitatively measured using innovative 3D OrbiSIMS, a hybrid time-of-flight / OrbitrapTM secondary ion mass spectrometer. RESULTS Within the Franz cell model, carboplatin and gemcitabine showed the highest diffusion rate diffusion at 16.4 and 6.53 µg/cm2/h respectively whereas olaparib, etoposide and paclitaxel were relatively poorly diffused at 1.87, 3.82 and 2.27 µg/cm2/h respectively. The minimum threshold of OrbiSIMS detection for label-free olaparib and dasatinib ions was 0.025 mg/ml and 0.2 mg/ml respectively throughout brain homogenate. CONCLUSION This study demonstrates different diffusion rates through brain tissue, between label-free chemotherapy drugs of distinct chemistries, with highest diffusion rates observed for carboplatin and gemcitabine. We also demonstrate label-free detection of olaparib and dasatinib using the innovative 3D OrbiSIMS method. These models will facilitate the rapid identification of agents most amenable for localised biomaterial-based chemotherapy delivery with high brain penetrance.


2019 ◽  
Vol 43 (43) ◽  
pp. 17033-17039 ◽  
Author(s):  
Ilaria Zanoni ◽  
Matteo Crosera ◽  
Simona Ortelli ◽  
Magda Blosi ◽  
Gianpiero Adami ◽  
...  

Trans-dermal in vitro study of CuO nanoparticles in contact with intact and damaged human skin using a Franz cell model.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 222 ◽  
Author(s):  
Alessandra Adrover ◽  
Gabriele Varani ◽  
Patrizia Paolicelli ◽  
Stefania Petralito ◽  
Laura Di Muzio ◽  
...  

In this work hydroxypropyl methylcellulose (HPMC) fast-dissolving thin films for oral administration are investigated. Furosemide (Class IV of the Biopharmaceutical Classification System) has been used as a model drug for in vitro release tests using three different set-ups: the Franz cell, the millifluidic flow-through device, and the paddle type dissolution apparatus (USP II). In order to enable drug incorporation within HPMC films, a multifunctional excipient, hydroxypropyl- β -cyclodextrin (HP- β -CD) has been included in the formulation, and the influence of HP- β -CD on film swelling, erosion, and release properties has been investigated. Mathematical models capable of describing the swelling and release processes from HPMC erodible thin films in different apparatuses have been developed. In particular, we propose a new model for the description of drug transport and release in a Franz cell that accounts for the effect of the unavoidable imperfect mixing of the receptor chamber.


Sign in / Sign up

Export Citation Format

Share Document