scholarly journals A platform for semi-automated voluntary training of common marmosets for behavioral neuroscience: Voluntary training of common marmosets

2019 ◽  
Author(s):  
Jeffrey D. Walker ◽  
Friederice Pirschel ◽  
Nicholas Gidmark ◽  
Jason N. MacLean ◽  
Nicholas G. Hatsopoulos

ABSTRACTIn most cases, behavioral neuroscience studies of the common marmoset employ adaptations of well-established methods used with macaque monkeys. However, in most cases these approaches do not readily generalize to marmosets indicating a need for alternatives. Here we present the development of one such alternate: a platform for semi-automated, voluntary in-home cage behavioral training that allows for the study of naturalistic behaviors. We describe the design and production of a modular behavioral training apparatus using CAD software and digital fabrication. We demonstrate that this apparatus permits voluntary behavioral training and data collection throughout the marmoset’s waking hours with little experimenter intervention. Further we demonstrate the use of this apparatus to reconstruct the kinematics of the marmoset’s upper limb movement during natural foraging behavior.NEW AND NOTEWORTHYThe study of marmosets in neuroscience has grown rapidly and this model organism presents challenges that are unique to this primate species. Here we address those challenges with an innovative platform for semi-automated and voluntary training of common marmosets. The platform allows marmosets to train throughout their waking hours with little to no experimenter intervention. We describe the use of this platform to capture the kinematics of the upper limb during natural foraging behavior and to expand the opportunities for behavioral training beyond the limits of traditional behavioral training sessions. The platform is flexible and can be easily extended to incorporate other motor tasks (e.g. visually cued reaching or manipulandum based tasks) using CAD models and digital fabrication.

2020 ◽  
Vol 123 (4) ◽  
pp. 1420-1426
Author(s):  
Jeffrey D. Walker ◽  
Friederice Pirschel ◽  
Nicholas Gidmark ◽  
Jason N. MacLean ◽  
Nicholas G. Hatsopoulos

Generally behavioral neuroscience studies of the common marmoset employ adaptations of well-established training methods used with macaque monkeys. However, in many cases these approaches do not readily generalize to marmosets indicating a need for alternatives. Here we present the development of one such alternate: a platform for semiautomated, voluntary in-home cage behavioral training that allows for the study of naturalistic behaviors. We describe the design and production of a modular behavioral training apparatus using CAD software and digital fabrication. We demonstrate that this apparatus permits voluntary behavioral training and data collection throughout the marmoset’s waking hours with little experimenter intervention. Furthermore, we demonstrate the use of this apparatus to reconstruct the kinematics of the marmoset’s upper limb movement during natural foraging behavior. NEW & NOTEWORTHY The study of marmosets in neuroscience has grown rapidly and presents unique challenges. We address those challenges with an innovative platform for semiautomated, voluntary training that allows marmosets to train throughout their waking hours with minimal experimenter intervention. We describe the use of this platform to capture upper limb kinematics during foraging and to expand the opportunities for behavioral training beyond the limits of traditional training sessions. This flexible platform can easily incorporate other tasks.


2019 ◽  
Vol 20 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Shotaro Uehara ◽  
Toru Oshio ◽  
Kazuyuki Nakanishi ◽  
Etsuko Tomioka ◽  
Miyu Suzuki ◽  
...  

Background: Common marmosets (Callithrix jacchus) are potentially useful nonhuman primate models for preclinical studies. Information for major drug-metabolizing cytochrome P450 (P450) enzymes is now available that supports the use of this primate species as an animal model for drug development. Here, we collect and provide an overview of information on the activities of common marmoset hepatic and intestinal microsomes with respect to 28 typical human P450 probe oxidations. Results: Marmoset P450 2D6/8-dependent R-metoprolol O-demethylation activities in hepatic microsomes were significantly correlated with those of midazolam 1′- and 4-hydroxylations, testosterone 6β-hydroxylation, and progesterone 6β-hydroxylation, which are probe reactions for marmoset P450 3A4/5/90. In marmosets, the oxidation activities of hepatic microsomes and intestinal microsomes were roughly comparable for midazolam and terfenadine. Overall, multiple forms of marmoset P450 enzymes in livers and intestines had generally similar substrate recognition functionalities to those of human and/or cynomolgus monkey P450 enzymes. Conclusion: The marmoset could be a model animal for humans with respect to the first-pass extraction of terfenadine and related substrates. These findings provide a foundation for understanding individual pharmacokinetic and toxicological results in nonhuman primates as preclinical models and will help to further support understanding of the molecular mechanisms of human P450 function.


Author(s):  
Steve Horvath ◽  
Joseph A. Zoller ◽  
Amin Haghani ◽  
Ake T. Lu ◽  
Ken Raj ◽  
...  

AbstractHuman DNA methylation data have previously been used to develop highly accurate biomarkers of aging (“epigenetic clocks”). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here, two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.


GeroScience ◽  
2021 ◽  
Author(s):  
Steve Horvath ◽  
Joseph A. Zoller ◽  
Amin Haghani ◽  
Ake T. Lu ◽  
Ken Raj ◽  
...  

AbstractHuman DNA methylation data have previously been used to develop highly accurate biomarkers of aging (“epigenetic clocks”). Subsequent studies demonstrate that similar epigenetic clocks can also be developed for mice and many other mammals. Here, we describe epigenetic clocks for common marmosets (Callithrix jacchus) based on novel DNA methylation data generated from highly conserved mammalian CpGs that were profiled using a custom Infinium array (HorvathMammalMethylChip40). From these, we developed and present here two epigenetic clocks for marmosets that are applicable to whole blood samples. We find that the human-marmoset clock for relative age exhibits moderately high age correlations in two other non-human primate species: vervet monkeys and rhesus macaques. In a separate cohort of marmosets, we tested whether intervention with rapamycin, a drug shown to extend lifespan in mice, would alter the epigenetic age of marmosets, as measured by the marmoset epigenetic clocks. These clocks did not detect significant effects of rapamycin on the epigenetic age of marmoset blood. The common marmoset stands out from other mammals in that it is not possible to build accurate estimators of sex based on DNA methylation data: the accuracy of a random forest predictor of sex (66%) was substantially lower than that observed for other mammals (which is close to 100%). Overall, the epigenetic clocks developed here for the common marmoset are expected to be useful for age estimation of wild-born animals and for anti-aging studies in this species.


2004 ◽  
Vol 85 (9) ◽  
pp. 2525-2533 ◽  
Author(s):  
James R. Jacob ◽  
Kuei-Chin Lin ◽  
Bud C. Tennant ◽  
Keith G. Mansfield

GB virus B (GBV-B) is a flavivirus that is related closely to hepatitis C virus (HCV) and induces an acute hepatitis when inoculated into several species of New World primates. Common marmosets (Callithrix jacchus) are a widely available, non-endangered primate species that is susceptible to GBV-B infection and develops a characteristic acute hepatitis. Here, animals were found to be susceptible to serially passaged serum and GBV-B transcripts. Hepatic pathology and peripheral viraemia could be quantified biochemically, immunophenotypically and morphologically, and persisted for periods of up to 6 months in some animals. Hepatitis was characterized by a marked influx of CD3+ CD8+ T lymphocytes and CD20+ B cells within the first 2 months of primary infection. The results of this study document the marmoset as another small, non-human primate species in which the pathogenesis of GBV-B can be studied and used as a surrogate model of HCV infection for investigation of pathogenesis and antiviral drug development.


1986 ◽  
Vol 164 (3) ◽  
pp. 926-931 ◽  
Author(s):  
M Kiyotaki ◽  
R C Desrosiers ◽  
N L Letvin

Herpesvirus saimiri induces a fatal lymphoproliferative syndrome in a variety of New World primate species. We now show that cell lines derived from PBL of the common marmoset by in vitro-immortalization with H. saimiri strain 11 represent a remarkably restricted lymphocyte population. These cell lines have NK cell function, phenotypically express both suppressor/cytotoxic (T8) and NK cell (NKH1)-associated antigens, and express a T cell receptor. This subpopulation of lymphocytes is a very minor population of cells in the peripheral blood of common marmosets (less than or equal to 3%). The specificity in the interaction between H. saimiri strain 11 and a subpopulation of common marmoset lymphocytes represents an example of a restricted viral lymphotropism and may have important implications for the disease induced by this virus in New World monkeys.


2013 ◽  
Vol 126 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Christoph Curths ◽  
Judy Wichmann ◽  
Sarah Dunker ◽  
Horst Windt ◽  
Heinz-Gerd Hoymann ◽  
...  

Animal models with a high predictive value for human trials are needed to develop novel human-specific therapeutics for respiratory diseases. The aim of the present study was to examine lung-function parameters in marmoset monkeys (Callithrix jacchus) that can be used to detect pharmacologically or provocation-induced AHR (airway hyper-responsiveness). Therefore a custom-made lung-function device that allows application of defined aerosol doses during measurement was developed. It was hypothesized that LPS (lipopolysaccharide)-challenged marmosets show AHR compared with non-challenged healthy subjects. Invasive plethysmography was performed in 12 anaesthetized orotracheally intubated and spontaneously breathing marmosets. Pulmonary data of RL (lung resistance), Cdyn (dynamic compliance), EF50 (mid-expiratory flow), Poes (oesophageal pressure), MV (minute volume), respiratory frequency (f) and VT (tidal volume) were collected. Measurements were conducted under baseline conditions and under MCh (methacholine)-induced bronchoconstriction. The measurement was repeated with the same group of animals after induction of an acute lung inflammation by intratracheal application of LPS. PDs (provocative doses) of MCh to achieve a certain increase in RL were significantly lower after LPS administration. AHR was demonstrated in the LPS treated compared with the naïve animals. The recorded lung-function data provide ground for pre-clinical efficacy and safety testing of anti-inflammatory substances in the common marmoset, a new translational NHP (non-human primate) model for LPS-induced lung inflammation.


2002 ◽  
Vol 83 (7) ◽  
pp. 1621-1633 ◽  
Author(s):  
Hal B. Jenson ◽  
Yasmin Ench ◽  
Yanjin Zhang ◽  
Shou-Jiang Gao ◽  
John R. Arrand ◽  
...  

A gammaherpesvirus related to Epstein–Barr virus (EBV; Human herpesvirus 4) infects otherwise healthy common marmosets (Callithrix jacchus). Long-term culture of common marmoset peripheral blood lymphocytes resulted in outgrowth of spontaneously immortalized lymphoblastoid cell lines, primarily of B cell lineage. Electron microscopy of cells and supernatants showed herpesvirus particles. There were high rates of serological cross-reactivity to other herpesviruses (68–86%), but with very low geometric mean antibody titres [1:12 to human herpesvirus 6 and 1:14 to Herpesvirus papio (Cercopithecine herpesvirus 12)]. Sequence analysis of the conserved herpesvirus DNA polymerase gene showed that the virus is a member of the lymphocryptovirus subgroup and is most closely related to a lymphocryptovirus from rhesus macaques and is closely related to EBV and Herpesvirus papio. High seroprevalence (79%, with geometric mean antibody titre of 1:110) among 28 common marmosets from two geographically distinct colonies indicated that the virus is likely present in many common marmosets in captivity. A New World primate harbouring a lymphocryptovirus suggests that this subgroup arose much earlier than previously thought.


Author(s):  
S. H. Choi ◽  
H. H. Cheung ◽  
W. K. Zhu

Biomedical objects are used as prostheses to repair damaged bone structures and missing body parts, as well as to study complex human organs and plan surgical procedures. They are, however, not economical to make by traditional manufacturing processes. Researchers have therefore explored the multi-material layered manufacturing (MMLM) technology to fabricate biomedical objects from CAD models. Yet, current MMLM systems remain experimental with limited practicality; they are slow, expensive, and can only handle small, simple objects. To address these limitations, this chapter presents the multi-material virtual prototyping (MMVP) technology for digital fabrication of complex biomedical objects cost-effectively. MMVP integrates MMLM with virtual reality to fabricate biomedical objects for stereoscopic visualisation and analyses to serve biomedical engineering purposes. This chapter describes the principle of MMVP and the processes of digital fabrication of biomedical objects. Case studies are presented to demonstrate these processes and their applications in biomedical engineering.


Sign in / Sign up

Export Citation Format

Share Document