scholarly journals A Universal Nonparametric Event Detection Framework for Neuropixels Data

2019 ◽  
Author(s):  
Hao Chen ◽  
Shizhe Chen ◽  
Xinyi Deng

SummaryNeuropixels probes present exciting new opportunities for neuroscience, but such large-scale high-density recordings also introduce unprecedented challenges in data analysis. Neuropixels data usually consist of hundreds or thousands of long stretches of sequential spiking activities that evolve non-stationarily over time and are often governed by complex, unknown dynamics. Extracting meaningful information from the Neuropixels recordings is a non-trial task. Here we introduce a general-purpose, graph-based statistical framework that, without imposing any parametric assumptions, detects points in time at which population spiking activity exhibits simultaneous changes as well as changes that only occur in a subset of the neural population, referred to as “change-points”. The sequence of change-point events can be interpreted as a footprint of neural population activities, which allows us to relate behavior to simultaneously recorded high-dimensional neural activities across multiple brain regions. We demonstrate the effectiveness of our method with an analysis of Neuropixels recordings during spontaneous behavior of an awake mouse in darkness. We observe that change-point dynamics in some brain regions display biologically interesting patterns that hint at functional pathways, as well as temporally-precise coordination with behavioral dynamics. We hypothesize that neural activities underlying spontaneous behavior, though distributed brainwide, show evidences for network modularity. Moreover, we envision the proposed framework to be a useful off-the-shelf analysis tool to the neuroscience community as new electrophysiological recording techniques continue to drive an explosive proliferation in the number and size of data sets.

2016 ◽  
Author(s):  
George Dimitriadis ◽  
Joana Neto ◽  
Adam R. Kampff

AbstractElectrophysiology is entering the era of ‘Big Data’. Multiple probes, each with hundreds to thousands of individual electrodes, are now capable of simultaneously recording from many brain regions. The major challenge confronting these new technologies is transforming the raw data into physiologically meaningful signals, i.e. single unit spikes. Sorting the spike events of individual neurons from a spatiotemporally dense sampling of the extracellular electric field is a problem that has attracted much attention [22, 23], but is still far from solved. Current methods still rely on human input and thus become unfeasible as the size of the data sets grow exponentially.Here we introduce the t-student stochastic neighbor embedding (t-sne) dimensionality reduction method [27] as a visualization tool in the spike sorting process. T-sne embeds the n-dimensional extracellular spikes (n = number of features by which each spike is decomposed) into a low (usually two) dimensional space. We show that such embeddings, even starting from different feature spaces, form obvious clusters of spikes that can be easily visualized and manually delineated with a high degree of precision. We propose that these clusters represent single units and test this assertion by applying our algorithm on labeled data sets both from hybrid [23] and paired juxtacellular/extracellular recordings [15]. We have released a graphical user interface (gui) written in python as a tool for the manual clustering of the t-sne embedded spikes and as a tool for an informed overview and fast manual curration of results from other clustering algorithms. Furthermore, the generated visualizations offer evidence in favor of the use of probes with higher density and smaller electrodes. They also graphically demonstrate the diverse nature of the sorting problem when spikes are recorded with different methods and arise from regions with different background spiking statistics.


2021 ◽  
Author(s):  
Xin Xiong ◽  
Ivor Cribben

To estimate dynamic functional connectivity for functional magnetic resonance imaging (fMRI) data, two approaches have dominated: sliding window and change point methods. While computationally feasible, the sliding window approach has several limitations. In addition, the existing change point methods assume a Gaussian distribution for and linear dependencies between the fMRI time series. In this work, we introduce a new methodology called Vine Copula Change Point (VCCP) to estimate change points in the functional connectivity network structure between brain regions. It uses vine copulas, various state-of-the-art segmentation methods to identify multiple change points, and a likelihood ratio test or the stationary bootstrap for inference. The vine copulas allow for various forms of dependence between brain regions including tail, symmetric and asymmetric dependence, which has not been explored before in the analysis of neuroimaging data. We apply VCCP to various simulation data sets and to two fMRI data sets: a reading task and an anxiety inducing experiment. In particular, for the former data set, we illustrate the complexity of textual changes during the reading of Chapter 9 in Harry Potter and the Sorcerer's Stone and find that change points across subjects are related to changes in more than one type of textual attributes. Further, the graphs created by the vine copulas indicate the importance of working beyond Gaussianity and linear dependence. Finally, the R package vccp implementing the methodology from the paper is available from CRAN.


GigaScience ◽  
2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Xiao Hu ◽  
Iddo Friedberg

Abstract Background Gene homology type classification is required for many types of genome analyses, including comparative genomics, phylogenetics, and protein function annotation. Consequently, a large variety of tools have been developed to perform homology classification across genomes of different species. However, when applied to large genomic data sets, these tools require high memory and CPU usage, typically available only in computational clusters. Findings Here we present a new graph-based orthology analysis tool, SwiftOrtho, which is optimized for speed and memory usage when applied to large-scale data. SwiftOrtho uses long k-mers to speed up homology search, while using a reduced amino acid alphabet and spaced seeds to compensate for the loss of sensitivity due to long k-mers. In addition, it uses an affinity propagation algorithm to reduce the memory usage when clustering large-scale orthology relationships into orthologous groups. In our tests, SwiftOrtho was the only tool that completed orthology analysis of proteins from 1,760 bacterial genomes on a computer with only 4 GB RAM. Using various standard orthology data sets, we also show that SwiftOrtho has a high accuracy. Conclusions SwiftOrtho enables the accurate comparative genomic analyses of thousands of genomes using low-memory computers. SwiftOrtho is available at https://github.com/Rinoahu/SwiftOrtho


2019 ◽  
Vol 31 (7) ◽  
pp. 1356-1379 ◽  
Author(s):  
Guanghao Sun ◽  
Shaomin Zhang ◽  
Yiwei Zhang ◽  
Kedi Xu ◽  
Qiaosheng Zhang ◽  
...  

With the development of neural recording technology, it has become possible to collect activities from hundreds or even thousands of neurons simultaneously. Visualization of neural population dynamics can help neuroscientists analyze large-scale neural activities efficiently. In this letter, Laplacian eigenmaps is applied to this task for the first time, and the experimental results show that the proposed method significantly outperforms the commonly used methods. This finding was confirmed by the systematic evaluation using nonhuman primate data, which contained the complex dynamics well suited for testing. According to our results, Laplacian eigenmaps is better than the other methods in various ways and can clearly visualize interesting biological phenomena related to neural dynamics.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S96-S96
Author(s):  
Joshua Russell ◽  
Matt Kaeberlein

Abstract Here we present new computational and experimental methods to leverage the gene expression and neuropathology data collected from several large-scale studies of Alzheimer’s disease . These data sets include diverse data types, including transcriptomics, neuropathology phenotypes such as quantification of amyloid beta plaques and tau tangles in different brain regions, as well as assessments of dementia prior to death. This meta-analysis is a complex undertaking because the available data are from different studies and/or brain regions involving study-specific confounders and/or region-specific biological processes. We have therefore taken neural network and probabilistic computational approaches that reduce the data dimensionality, allowing statistical comparison across all brain samples. These approaches identify gene expression changes that are significantly associated with clinical and neuropathological assessment of Alzheimer’s disease. We then conduct in vivo validation of the genes through genetic screening of C. elegans models of Alzheimer's disease utilizing our automated robotic lifespan analysis platform. This approach allows for the greater leverage of existing Alzheimer’s disease biobank data to identify deep genetic signatures that could help identify new clinical gene-expression markers and pharmacological targets for Alzheimer’s disease.


2020 ◽  
Author(s):  
Stephen L. Keeley ◽  
Mikio C. Aoi ◽  
Yiyi Yu ◽  
Spencer L. Smith ◽  
Jonathan W. Pillow

AbstractNeural datasets often contain measurements of neural activity across multiple trials of a repeated stimulus or behavior. An important problem in the analysis of such datasets is to characterize systematic aspects of neural activity that carry information about the repeated stimulus or behavior of interest, which can be considered “signal”, and to separate them from the trial-to-trial fluctuations in activity that are not time-locked to the stimulus, which for purposes of such analyses can be considered “noise”. Gaussian Process factor models provide a powerful tool for identifying shared structure in high-dimensional neural data. However, they have not yet been adapted to the problem of characterizing signal and noise in multi-trial datasets. Here we address this shortcoming by proposing “signal-noise” Poisson-spiking Gaussian Process Factor Analysis (SNP-GPFA), a flexible latent variable model that resolves signal and noise latent structure in neural population spiking activity. To learn the parameters of our model, we introduce a Fourier-domain black box variational inference method that quickly identifies smooth latent structure. The resulting model reliably uncovers latent signal and trial-to-trial noise-related fluctuations in large-scale recordings. We use this model to show that predominantly, noise fluctuations perturb neural activity within a subspace orthogonal to signal activity, suggesting that trial-by-trial noise does not interfere with signal representations. Finally, we extend the model to capture statistical dependencies across brain regions in multi-region data. We show that in mouse visual cortex, models with shared noise across brain regions out-perform models with independent per-region noise.


2019 ◽  
Author(s):  
Takuya Ito ◽  
Scott L. Brincat ◽  
Markus Siegel ◽  
Ravi D. Mill ◽  
Biyu J. He ◽  
...  

AbstractMany large-scale functional connectivity studies have emphasized the importance of communication through increased inter-region correlations during task states. In contrast, local circuit studies have demonstrated that task states primarily reduce correlations among pairs of neurons, likely enhancing their information coding by suppressing shared spontaneous activity. Here we sought to adjudicate between these conflicting perspectives, assessing whether co-active brain regions during task states tend to increase or decrease their correlations. We found that variability and correlations primarily decrease across a variety of cortical regions in two highly distinct data sets: non-human primate spiking data and human functional magnetic resonance imaging data. Moreover, this observed variability and correlation reduction was accompanied by an overall increase in dimensionality (reflecting less information redundancy) during task states, suggesting that decreased correlations increased information coding capacity. We further found in both spiking and neural mass computational models that task-evoked activity increased the stability around a stable attractor, globally quenching neural variability and correlations. Together, our results provide an integrative mechanistic account that encompasses measures of large-scale neural activity, variability, and correlations during resting and task states.


2018 ◽  
Vol 30 (7) ◽  
pp. 1750-1774 ◽  
Author(s):  
George Dimitriadis ◽  
Joana P. Neto ◽  
Adam R. Kampff

Electrophysiology is entering the era of big data. Multiple probes, each with hundreds to thousands of individual electrodes, are now capable of simultaneously recording from many brain regions. The major challenge confronting these new technologies is transforming the raw data into physiologically meaningful signals, that is, single unit spikes. Sorting the spike events of individual neurons from a spatiotemporally dense sampling of the extracellular electric field is a problem that has attracted much attention (Rey, Pedreira, & Quian Quiroga, 2015 ; Rossant et al., 2016 ) but is still far from solved. Current methods still rely on human input and thus become unfeasible as the size of the data sets grows exponentially. Here we introduce the [Formula: see text]-student stochastic neighbor embedding (t-SNE) dimensionality reduction method (Van der Maaten & Hinton, 2008 ) as a visualization tool in the spike sorting process. t-SNE embeds the [Formula: see text]-dimensional extracellular spikes ([Formula: see text] = number of features by which each spike is decomposed) into a low- (usually two-) dimensional space. We show that such embeddings, even starting from different feature spaces, form obvious clusters of spikes that can be easily visualized and manually delineated with a high degree of precision. We propose that these clusters represent single units and test this assertion by applying our algorithm on labeled data sets from both hybrid (Rossant et al., 2016 ) and paired juxtacellular/extracellular recordings (Neto et al., 2016 ). We have released a graphical user interface (GUI) written in Python as a tool for the manual clustering of the t-SNE embedded spikes and as a tool for an informed overview and fast manual curation of results from different clustering algorithms. Furthermore, the generated visualizations offer evidence in favor of the use of probes with higher density and smaller electrodes. They also graphically demonstrate the diverse nature of the sorting problem when spikes are recorded with different methods and arise from regions with different background spiking statistics.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Merel C. Postema ◽  
Daan van Rooij ◽  
Evdokia Anagnostou ◽  
Celso Arango ◽  
Guillaume Auzias ◽  
...  

Abstract Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen’s d = −0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD.


Sign in / Sign up

Export Citation Format

Share Document