scholarly journals Does evolution design robust food webs ?

2019 ◽  
Author(s):  
B. Girardot ◽  
M. Gauduchon ◽  
F. Ménard ◽  
JC. Poggiale

Theoretical works that use a dynamical approach to study the ability of ecological communities to resist perturbations are largely based on randomly generated ecosystem structures. In contrast, we propose here to asses the robustness of food webs drawn from ecological and evolutionary processes with the use of community evolution models. In a first part, with the use of Adaptive Dynamics theoretical framework, we generate a variety of diversified food webs by solely sampling different richness levels of the environment as a control parameter, and obtain networks that satisfactory compare with empirical data. This allows us to highlight the complex, structuring role of the environmental richness during the evolutionary emergence of food webs. In a second part, we study the short-term ecological responses of food webs to swift changes in their customary environmental richness condition. We reveal a strong link between the environmental conditions that attended food webs evolutionary constructions and their robustness to environmental perturbations. When focusing on emergent properties of our evolved food webs, especially connectance, we highlight results that seem to contradict the current paradigm. Among these food webs, the most connected appear to be the less robust to sudden depletion of the environmental richness that constituted their evolutionary environment. Otherwise, we appraise the “adaptation” of food webs, by examining how they perform after being suddently immersed in an environment of modified richness level, in comparison with a trophic network that experienced this latter environmental condition all along its evolution.

2020 ◽  
Vol 287 (1930) ◽  
pp. 20200747
Author(s):  
B. Girardot ◽  
M. Gauduchon ◽  
F. Ménard ◽  
J. C. Poggiale

Theoretical works that use a dynamical approach to study the ability of ecological communities to resist perturbations are largely based on randomly generated ecosystem structures. By contrast, we ask here whether the evolutionary history of food webs matters for their robustness. Using a community evolution model, we first generate trophic networks by varying the level of energy supply (richness) of the environment in which species adapt and diversify. After placing our simulation outputs in perspective with present-day food webs empirical data, we highlight the complex, structuring role of this environmental condition during the evolutionary setting up of trophic networks. We then assess the robustness of food webs by studying their short-term ecological responses to swift changes in their customary environmental richness. We reveal that the past conditions have a crucial effect on the robustness of current food webs. Moreover, directly focusing on connectance of evolved food webs, it turns out that the most connected ones appear to be the least robust to sharp depletion in the environmental energy supply. Finally, we appraise the ‘adaptation’ of food webs themselves: generally poor, except in relation to a diversity of flux property.


2020 ◽  
Vol 28 (3) ◽  
pp. 360-370
Author(s):  
Stanislav N. Kotlyarov ◽  
Anna A. Kotlyarova

Despite all achievements of the modern medicine, the problem of chronic obstructive pulmonary disease (COPD) does not lose its relevance. The current paradigm suggests a key role of macrophages in inflammation in COPD. Macrophages are known to be heterogeneous in their functions. This heterogeneity is determined by their immunometabolic profile and also by peculiarities of lipid homeostasis of cells. Aim. To analyze the role of the ABCA1 transporter, a member of the ABC A subfamily, in the pathogenesis of COPD. The expression of ABCA1 in lung tissues is on the second place after the liver, which shows the important role of the carrier and of lipid homeostasis in the function of lungs. Analysis of the literature shows that participation of the transporter in inflammation consists in regulation of the content of cholesterol in the lipid rafts of the membranes, in phagocytosis and apoptosis. Conclusion. Through regulation of the process of reverse transport of cholesterol in macrophages of lungs, ABCA1 can change their inflammatory response, which makes a significant contribution to the pathogenesis of COPD.


Diagnostics ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Tomislav Meštrović ◽  
Mario Matijašić ◽  
Mihaela Perić ◽  
Hana Čipčić Paljetak ◽  
Anja Barešić ◽  
...  

The current paradigm of urinary tract infection (UTI) pathogenesis takes into account the contamination of the periurethral space by specific uropathogens residing in the gut, which is followed by urethral colonization and pathogen ascension to the urinary bladder. Consequently, studying the relationship between gut microbiota and the subsequent development of bacteriuria and UTI represents an important field of research. However, the well-established diagnostic and therapeutic paradigm for urinary tract infections (UTIs) has come into question with the discovery of a multifaceted, symbiotic microbiome in the healthy urogenital tract. More specifically, emerging data suggest that vaginal dysbiosis may result in Escherichia coli colonization and prompt recurrent UTIs, while urinary microbiome perturbations may precede the development of UTIs and other pathologic conditions of the urinary system. The question is whether these findings can be exploited for risk reduction and treatment purposes. This review aimed to appraise the three aforementioned specific microbiomes regarding their potential influence on UTI development by focusing on the recent studies in the field and assessing the potential linkages between these different niches, as well as evaluating the state of translational research for novel therapeutic and preventative approaches.


Author(s):  
Adrian Mallory ◽  
Lilian Omoga ◽  
Domenic Kiogora ◽  
Joy Riungu ◽  
Dorothy Kagendi ◽  
...  

Abstract Achieving universal sanitation in informal settlements will depend on improved onsite sanitation, as sewer systems are unlikely to be viable solutions due to technical and political constraints. In Nairobi, Kenya, 60% of the population live among its 150 informal settlements, occupying only 5% of its total residential land. This research assessed the role of informal pit emptiers in providing sanitation in Mukuru and Kibera, two of the largest informal settlements in Nairobi, and the barriers to achieving improved services. Through qualitative data collection, the research found that pit emptiers are institutionally and physically outside of the current paradigm of sanitation service delivery. There is no infrastructure available to remove waste from informal settlements, except for a transfer station that is being piloted by Sanergy, and instead waste ends up disposed in the community. The pit emptiers also face violence and intimidation from competitors or locals claiming ownership of territory. Providing improved sanitation in such areas will depend on the provision of new infrastructure, but this can only succeed with a detailed understanding of the competing and vested interests that can enable or undermine a project.


2007 ◽  
Vol 340 ◽  
pp. 55-62 ◽  
Author(s):  
K Kon ◽  
H Kurokura ◽  
K Hayashizaki

2021 ◽  
Author(s):  
Glenn A. Hyndes ◽  
Emma Berdan ◽  
Cristian Duarte ◽  
Jenifer E. Dugan ◽  
Kyle A. Emery ◽  
...  

Sandy beaches are iconic interfaces that functionally link the ocean with the land by the flow of marine organic matter. These cross-ecosystem fluxes often comprise uprooted seagrass and dislodged macroalgae that can form substantial accumulations of detritus, termed ‘wrack’, on sandy beaches. In addition, the tissue of the carcasses of marine animals that regularly wash up on beaches form a rich food source (‘carrion’) for a diversity of scavenging animals. Here, we provide a global review of how wrack and carrion provide spatial subsidies that shape the structure and functioning of sandy beach ecosystems (sandy beaches and adjacent surf zones), which typically have little in situ primary production. We also examime the spatial scaling of the influence of these processes across the broader seascape and landscape, and identify key gaps in our knowledge to guide future research directions and priorities. Globally, large quantities of detrital kelp and seagrass can flow into sandy beach ecosystems, where microbial decomposers and animals remineralise and consume the imported organic matter. The supply and retention of wrack are influenced by the oceanographic processes that transport it, the geomorphology and landscape context of the recipient beaches, and the condition, life history and morphological characteristics of the taxa that are the ultimate source of wrack. When retained in beach ecosystems, wrack often creates hotspots of microbial metabolism, secondary productivity, biodiversity, and nutrient remineralization. Nutrients are produced during wrack break-down, and these can return to coastal waters in surface flows (swash) and the aquifier discharging into the subtidal surf. Beach-cast kelp often plays a key trophic role, being an abundant and preferred food source for mobile, semi-aquatic invertebrates that channel imported algal matter to predatory invertebrates, fish, and birds. The role of beach-cast marine carrion is likely to be underestimated, as it can be consumed rapidly by highly mobile scavengers (e.g. foxes, coyotes, raptors, vultures). These consumers become important vectors in transferring marine productivity inland, thereby linking marine and terrestrial ecosystems. Whilst deposits of organic matter on sandy beach ecosystems underpin a range of ecosystem functions and services, these can be at variance with aesthetic perceptions resulting in widespread activities, such ‘beach cleaning and grooming’. This practice diminishes the energetic base of food webs, intertidal fauna, and biodiversity. Global declines in seagrass beds and kelp forests (linked to global warming) are predicted to cause substantial reductions in the amounts of marine organic matter reaching many beach ecosystems, likely causing flow-on effects on food webs and biodiversity. Similarly, future sea-level rise and stormier seas are likely to profoundly alter the physical attributes of beaches, which in turn can change the rates at which beaches retain and process the influxes of wrack and animal carcasses. Conservation of the multi-faceted ecosystem services that sandy beaches provide will increasingly need to encompass a greater societal appreciation and the safeguarding of ecological functions reliant on beach-cast organic matter on innumerable ocean shores worldwide.


Author(s):  
Ute Jacob ◽  
Aaron Thierry ◽  
Ulrich Brose ◽  
Wolf E. Arntz ◽  
Sofia Berg ◽  
...  
Keyword(s):  

2018 ◽  
Vol 5 ◽  
Author(s):  
Catherine Cavallo ◽  
André Chiaradia ◽  
Bruce E. Deagle ◽  
Julie C. McInnes ◽  
Sonia Sánchez ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document