scholarly journals Low-rate firing limit for neurons with axon, soma and dendrites driven by spatially distributed stochastic synapses

2019 ◽  
Author(s):  
Robert P. Gowers ◽  
Yulia Timofeeva ◽  
Magnus J. E. Richardson

AbstractAnalytical forms for neuronal firing rates are important theoretical tools for the analysis of network states. Since the 1960s, the majority of approaches have treated neurons as being electrically compact and therefore isopotential. These approaches have yielded considerable insight into how single-cell properties affect network activity; however, many neuronal classes, such as cortical pyramidal cells, are electrically extended objects. Calculation of the complex flow of electrical activity driven by stochastic spatio-temporal synaptic input streams in these structures has presented a significant analytical challenge. Here we demonstrate that an extension of the level-crossing method of Rice, previously used for compact cells, provides a general framework for approximating the firing rate of neurons with spatial structure. Even for simple models, the analytical approximations derived demonstrate a surprising richness including: independence of the firing rate to the electrotonic length for certain models, but with a form distinct to the point-like leaky integrate-and-fire model; a non-monotonic dependence of the firing rate on the number of dendrites receiving synaptic drive; a significant effect of the axonal and somatic load on the firing rate; and the role that the trigger position on the axon for spike initiation has on firing properties. The approach necessitates only calculating first and second moments of the non-thresholded voltage and its rate of change in neuronal structures subject to spatio-temporal synaptic fluctuations. The combination of simplicity and generality promises a framework that can be built upon to incorporate increasing levels of biophysical detail and extend beyond the low-rate firing limit treated in this paper.Author summaryNeurons are extended cells with multiple branching dendrites, a cell body and an axon. In an active neuronal network, neurons receive vast numbers of incoming synaptic pulses throughout their dendrites and cell body that each exhibit significant variability in amplitude and arrival time. The resulting synaptic input causes voltage fluctuations throughout their structure that evolve in space and time. The dynamics of how these signals are integrated and how they ultimately trigger outgoing spikes have been modelled extensively since the late 1960s. However, until relatively recently the ma jority of the mathematical formulae describing how fluctuating synaptic drive triggers action potentials have been applicable only for small neurons with the dendritic and axonal structure ignored. This has been largely due to the mathematical complexity of including the effects of spatially distributed synaptic input. Here we show that in a physiologically relevant, low-firing-rate regime, an approximate, level-crossing approach can be used to provide an estimate for the neuronal firing rate even when the dendrites and axons are included. We illustrate this approach using basic neuronal morphologies that capture the fundamentals of neuronal structure. Though the models are simple, these preliminary results show that it is possible to obtain useful formulae that capture the effects of spatially distributed synaptic drive. The generality of these results suggests they will provide a mathematical framework for future studies that might require the structure of neurons to be taken into account, such as the effect of electrical fields or multiple synaptic input streams that target distinct spatial domains of cortical pyramidal cells.

2017 ◽  
Author(s):  
Upinder Singh Bhalla

AbstractSequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here we show that synaptically-driven reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that this selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models. Again, sequences were recognized, and local channel modulation on the length-scale of sequence input could elicit changes in neuronal firing. We predict that dendritic sequence-recognition zones occupy 5 to 20 microns and recognize time-intervals of 0.2 to 5s. We suggest that this mechanism provides highly parallel and selective neural computation in a functionally important time range.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Upinder Singh Bhalla

Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here, we show that synaptically-driven reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data. Again, sequences were recognized, and local channel modulation downstream of putative sequence-triggered signaling could elicit changes in neuronal firing. We predict that dendritic sequence-recognition zones occupy 5 to 30 microns and recognize time-intervals of 0.2 to 5 s. We suggest that this mechanism provides highly parallel and selective neural computation in a functionally important time range.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Eslam Mounier ◽  
Bassem Abdullah ◽  
Hani Mahdi ◽  
Seif Eldawlatly

AbstractThe Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimulation patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The performance of the model was assessed using different testing data sets and different firing rate windows. An overall mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as viable models of LGN firing.


2019 ◽  
Vol 316 (2) ◽  
pp. R110-R120 ◽  
Author(s):  
Yiming Shen ◽  
Jin Bong Park ◽  
So Yeong Lee ◽  
Seong Kyu Han ◽  
Pan Dong Ryu

Exercise training (ExT) normalizes elevated sympathetic nerve activity in heart failure (HF), but the underlying mechanisms are not well understood. In this study, we examined the effects of 3 wk of ExT on the electrical activity of the hypothalamic presympathetic neurons in the brain slice of HF rats. HF rats were prepared by ligating the left descending coronary artery. The electrophysiological properties of paraventricular nucleus neurons projecting to the rostral ventrolateral medulla (PVN-RVLM) were examined using the slice patch-clamp technique. The neuronal firing rate was elevated in HF rats, and ExT induced a reduction in the firing rate ( P < 0.01). This ExT-induced decrease in the firing rate was associated with an increased frequency of spontaneous and miniature inhibitory postsynaptic current (IPSCs; P < 0.05). There was no significant change in excitatory postsynaptic current. Replacing Ca2+ with Mg2+ in the recording solution reduced the elevated IPSC frequency in HF rats with ExT ( P < 0.01) but not in those without ExT, indicating an increase in the probability of GABA release. In contrast, ExT did not restore the reduced GABAA receptor-mediated tonic inhibitory current in HF rats. A GABAA receptor blocker (bicuculline, 20 μM) increased the firing rate in HF rats with ExT ( P < 0.01) but not in those without ExT. Collectively, these results show that ExT normalized the elevated firing activity by increasing synaptic GABA release in PVN-RVLM neurons in HF rats. Our findings provide a brain mechanism underlying the beneficial effects of ExT in HF, which may shed light on the pathophysiology of other diseases accompanied by sympathetic hyperactivation.


Sign in / Sign up

Export Citation Format

Share Document