scholarly journals Symbiont-mediated protection varies with wasp genotype in the Drosophila melanogaster-Spiroplasma interaction

2019 ◽  
Author(s):  
Jordan E Jones ◽  
Gregory D D Hurst

AbstractThe ability of an insect to survive attack by natural enemies can be modulated by the presence of defensive symbionts. Study of aphid-symbiont-enemy interactions has indicated that protection may depend on the interplay of symbiont, host and attacking parasite genotypes. However, the importance of these interactions are poorly understood outside of this model system. Here, we study interactions within a Drosophila model system, in which Spiroplasma protect their host against parasitoid wasps and nematode attack. We examine whether the strength of protection conferred by Spiroplasma to its host, Drosophila melanogaster varies with strain of attacking Leptopilina heterotoma wasp. We perform this analysis in the presence and absence of ethanol, an environmental factor that also impacts the outcome of parasitism. We observed that Spiroplasma killed all strains of wasp. However, the protection produced by Spiroplasma following wasp attack depended on attacking wasp strain. A composite measure of protection, including both the chance of the fly surviving attack and the relative fecundity/fertility of the survivors, varied from a <4% positive effect of the symbiont following attack of the fly host by the Lh14 strain of wasp to 21% for the Lh-Fr strain in the absence of ethanol. Variation in protection provided was not associated with differences in the oviposition behaviour of the different wasp strains. We observed that environmental ethanol altered the pattern of protection against wasp strains, with Spiroplasma being most protective against the Lh-Mad wasp strain in the presence of ethanol. These data indicate that the dynamics of the Spiroplasma-Drosophila-wasp tripartite interaction depend upon the genetic diversity within the attacking wasp population, and that prediction of symbiont dynamics in natural systems will thus require analysis across natural enemy genotypes and levels of environmental ethanol.Impact SummaryNatural enemies – predators, parasites and pathogens – are a common source of mortality in animals, and this has driven the evolution of an array of mechanisms for preventing and surviving attack. Recently it has been observed that microbial symbionts form a component of insect defence against attack by pathogens and parasites. Whether an individual fly dies or lives following wasp attack, for instance, is partly determined by the presence or absence of Spiroplasma bacteria in the fly blood. The evolutionary biology of these ‘protective symbioses’ will in part depend on the specificity of defence – does Spiroplasma defend against all wasp strains equally, or does defence vary between wasp strains? We investigated this in the model insect, Drosophila melanogaster. We observed that the defensive symbiont killed all strains of wasps tested. However, the capacity of the symbiont to rescue the fly varied – Spiroplasma rescued the flies for some attacking wasp strains, but not for others. These data mean that the degree to which symbionts protect their host will depend on the wasp strains circulating in nature. Our results are important in terms of understanding the forces that promote symbiont mediated protection and understanding the origins of diversity of circulating wasp strains. Further, these data indicate enemy diversity and their interaction with protective symbionts should be included in evaluation of the efficiency of biocontrol programmes involving natural enemies.

Heredity ◽  
2020 ◽  
Vol 124 (4) ◽  
pp. 592-602 ◽  
Author(s):  
Jordan Elouise Jones ◽  
Gregory David Douglas Hurst

AbstractThe ability of an insect to survive attack by natural enemies can be modulated by the presence of defensive symbionts. Study of aphid–symbiont–enemy interactions has indicated that protection may depend on the interplay of symbiont, host and attacking parasite genotypes. However, the importance of these interactions is poorly understood outside of this model system. Here, we study interactions within a Drosophila model system, in which Spiroplasma protect their host against parasitoid wasps and nematodes. We examine whether the strength of protection conferred by Spiroplasma to its host, Drosophila melanogaster varies with strain of attacking Leptopilina heterotoma wasp. We perform this analysis in the presence and absence of ethanol, an environmental factor that also impacts the outcome of parasitism. We observed that Spiroplasma killed all strains of wasp. However, the protection produced by Spiroplasma following wasp attack depended on wasp strain. A composite measure of protection, including both the chance of the fly surviving attack and the relative fecundity/fertility of the survivors, varied from a <4% positive effect of the symbiont following attack of the fly host by the Lh14 strain of wasp to 21% for the Lh-Fr strain in the absence of ethanol. We also observed that environmental ethanol altered the pattern of protection against wasp strains. These data indicate that the dynamics of the Spiroplasma–Drosophila–wasp tripartite interaction depend upon the genetic diversity within the attacking wasp population, and that prediction of symbiont dynamics in natural systems will thus require analysis across natural enemy genotypes and levels of environmental ethanol.


Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 474
Author(s):  
Palle Duun Rohde ◽  
Asbjørn Bøcker ◽  
Caroline Amalie Bastholm Jensen ◽  
Anne Louise Bergstrøm ◽  
Morten Ib Juul Madsen ◽  
...  

Rapamycin is a powerful inhibitor of the TOR (Target of Rapamycin) pathway, which is an evolutionarily conserved protein kinase, that plays a central role in plants and animals. Rapamycin is used globally as an immunosuppressant and as an anti-aging medicine. Despite widespread use, treatment efficiency varies considerably across patients, and little is known about potential side effects. Here we seek to investigate the effects of rapamycin by using Drosophila melanogaster as model system. Six isogenic D. melanogaster lines were assessed for their fecundity, male longevity and male heat stress tolerance with or without rapamycin treatment. The results showed increased longevity and heat stress tolerance for male flies treated with rapamycin. Conversely, the fecundity of rapamycin-exposed individuals was lower than for flies from the non-treated group, suggesting unwanted side effects of the drug in D. melanogaster. We found strong evidence for genotype-by-treatment interactions suggesting that a ‘one size fits all’ approach when it comes to treatment with rapamycin is not recommendable. The beneficial responses to rapamycin exposure for stress tolerance and longevity are in agreement with previous findings, however, the unexpected effects on reproduction are worrying and need further investigation and question common believes that rapamycin constitutes a harmless drug.


2013 ◽  
Vol 304 (3) ◽  
pp. R177-R188 ◽  
Author(s):  
Wendi S. Neckameyer ◽  
Kathryn J. Argue

Numerous studies have detailed the extensive conservation of developmental signaling pathways between the model system, Drosophila melanogaster, and mammalian models, but researchers have also profited from the unique and highly tractable genetic tools available in this system to address critical questions in physiology. In this review, we have described contributions that Drosophila researchers have made to mathematical dynamics of pattern formation, cardiac pathologies, the way in which pain circuits are integrated to elicit responses from sensation, as well as the ways in which gene expression can modulate diverse behaviors and shed light on human cognitive disorders. The broad and diverse array of contributions from Drosophila underscore its translational relevance to modeling human disease.


2020 ◽  
Author(s):  
Robin Guilhot ◽  
Antoine Rombaut ◽  
Anne Xuéreb ◽  
Kate Howell ◽  
Simon Fellous

AbstractInteractions between microbial symbionts of metazoan hosts are emerging as key features of symbiotic systems. Little is known about the role of such interactions on the maintenance of symbiosis through host’s life cycle. We studied the influence of symbiotic bacteria on the maintenance of symbiotic yeast through metamorphosis of the fly Drosophila melanogaster. To this end we mimicked the development of larvae in natural fruit. In absence of bacteria yeast was never found in young adults. However, yeast could maintain through metamorphosis when larvae were inoculated with symbiotic bacteria isolated from D. melanogaster faeces. Furthermore, an Enterobacteriaceae favoured yeast transstadial maintenance. Because yeast is a critical symbiont of D. melanogaster flies, bacterial influence on host-yeast association may have consequences for the evolution of insect-yeast-bacteria tripartite symbiosis and their cooperation.Summary statementBacterial symbionts of Drosophila influence yeast maintenance through fly metamorphosis, a novel observation that may have consequences for the evolution of insect-yeast-bacteria interactions.


2019 ◽  
Author(s):  
Patrick Monnahan ◽  
Yaniv Brandvain

AbstractSearching for population genomic signals left behind by positive selection is a major focus of evolutionary biology, particularly as sequencing technologies develop and costs decline. The effect of the number of chromosome copies (i.e. ploidy) on the manifestation of these signals remains an outstanding question, despite a wide appreciation of ploidy being a fundamental parameter governing numerous biological processes. We clarify the principal forces governing the differential manifestation and persistence of the signal of selection by separating the effects of polyploidy on rates of fixation versus rates of diversity (i.e. mutation and recombination) with a set of coalescent simulations. We explore what the major consequences of polyploidy, such as a more localized signal, greater dependence on dominance, and longer persistence of the signal following fixation, mean for within- and across-ploidy inference on the strength and prevalence of selective sweeps. As genomic advances continue to open doors for interrogating natural systems, studies such as this aid our ability to anticipate, interpret, and compare data across ploidy levels.


Sign in / Sign up

Export Citation Format

Share Document