scholarly journals Pericyte Bridges in Homeostasis and Hyperglycemia: Reconsidering Pericyte Dropout and Microvascular Structures

2019 ◽  
Author(s):  
Bruce A. Corliss ◽  
H. Clifton Ray ◽  
Richard Doty ◽  
Corbin Mathews ◽  
Natasha Sheybani ◽  
...  

AbstractDiabetic retinopathy threatens the vision of a third of diabetic patients. Progression of the disease is attributed to the dropout of pericytes, a cell type that enwraps and stabilizes the microvasculature. In tandem with this presumptive pericyte dropout, there is enriched formation of structures assumed to be remnants of collapsed or regressed vessels, previously classified as acellular capillaries, string vessels, and basement membrane bridges. Instead of endothelial cells, we show that pericytes colocalize with basement membrane bridges, and both bridging structures are enriched by cell-specific knockout of KLF4 and reversibly enriched with elevation of Ang-2, PDGF-BB, and blood sugar. Our data suggests that pericyte counts from retinal digests have misclassified pericyte bridges as endothelial structures and have exaggerated the role of pericyte loss in DR progression. In vivo imaging of corneal limbal vessels demonstrates pericyte migration off-vessel, implicating pericyte movement in formation of pericyte bridges and pathogenesis of diabetic retinopathy.

2020 ◽  
Author(s):  
Ada Admin ◽  
Bruce A. Corliss ◽  
H. Clifton Ray ◽  
Richard W. Doty ◽  
Corbin Mathews ◽  
...  

Diabetic retinopathy is a potentially blinding eye disease that threatens the vision of a ninth of diabetic patients. Progression of the disease has long been attributed to an initial dropout of pericytes that enwrap the retinal microvasculature. Revealed through retinal vascular digests, a subsequent increase in basement membrane bridges is observed. Using cell-specific markers, we demonstrate that pericytes rather than endothelial cells colocalize with these bridges. We show that the density of bridges transiently increases with elevation of Ang-2, PDGF-BB, and blood sugar, is rapidly reversed on a time scale of days, and often associated with a pericyte cell body located off-vessel. Cell-specific knockout of KLF4 in pericytes fully replicates this phenotype. <i>In vivo</i> imaging of limbal vessels demonstrates pericyte migration off-vessel, with rapid pericyte filopodial-like process formation between adjacent vessels. Accounting for off-vessel and on-vessel pericytes, we observe no pericyte loss relative to non-diabetic control retina. These findings reveal the possibility that pericyte perturbations in location and process formation may play a role in the development of pathological vascular remodeling in diabetic retinopathy.


2020 ◽  
Author(s):  
Ada Admin ◽  
Bruce A. Corliss ◽  
H. Clifton Ray ◽  
Richard W. Doty ◽  
Corbin Mathews ◽  
...  

Diabetic retinopathy is a potentially blinding eye disease that threatens the vision of a ninth of diabetic patients. Progression of the disease has long been attributed to an initial dropout of pericytes that enwrap the retinal microvasculature. Revealed through retinal vascular digests, a subsequent increase in basement membrane bridges is observed. Using cell-specific markers, we demonstrate that pericytes rather than endothelial cells colocalize with these bridges. We show that the density of bridges transiently increases with elevation of Ang-2, PDGF-BB, and blood sugar, is rapidly reversed on a time scale of days, and often associated with a pericyte cell body located off-vessel. Cell-specific knockout of KLF4 in pericytes fully replicates this phenotype. <i>In vivo</i> imaging of limbal vessels demonstrates pericyte migration off-vessel, with rapid pericyte filopodial-like process formation between adjacent vessels. Accounting for off-vessel and on-vessel pericytes, we observe no pericyte loss relative to non-diabetic control retina. These findings reveal the possibility that pericyte perturbations in location and process formation may play a role in the development of pathological vascular remodeling in diabetic retinopathy.


2014 ◽  
Vol 83 (4) ◽  
pp. 322-327
Author(s):  
Ewa Stępień ◽  
Iwona Szuścik ◽  
Aleksandra Tokarz ◽  
Francisco J. Enguita ◽  
Bogdan Solnica ◽  
...  

The project is proposed to explain the role of specific circulating microparticles (MPs) as conveyors in trafficking bio-active molecules in type 1 (T1DM) and type 2 (T2DM) diabetic patients with risk of diabetic retinopathy (DR) and in patients with metabolic syndrome (MS). The possible role of miRNAs as modulators of these processes (in switching on/off mechanism on the molecular level) is proposed. An increased number of MPs with respect to glucose concentrations and levels of proangiogenic factors in vivo (patients’ plasma) is expected. The relationship between age of patents and MP content (cell membrane glycoproteins, phosphatidylserine or miRNA profile) is possible. MPs will be obtained from T1DM (n = 30) T2DM (n = 30), MS (n = 30) and controls (n = 30). Retinopathy in diabetic patients will be assessed by imaging method. Biological profile of MPs will be assessed in vitro by means of flow cytometry, molecular biology methods and cell proliferation assays.


2020 ◽  
Author(s):  
Ada Admin ◽  
Bruce A. Corliss ◽  
H. Clifton Ray ◽  
Richard W. Doty ◽  
Corbin Mathews ◽  
...  

Diabetic retinopathy is a potentially blinding eye disease that threatens the vision of a ninth of diabetic patients. Progression of the disease has long been attributed to an initial dropout of pericytes that enwrap the retinal microvasculature. Revealed through retinal vascular digests, a subsequent increase in basement membrane bridges is observed. Using cell-specific markers, we demonstrate that pericytes rather than endothelial cells colocalize with these bridges. We show that the density of bridges transiently increases with elevation of Ang-2, PDGF-BB, and blood sugar, is rapidly reversed on a time scale of days, and often associated with a pericyte cell body located off-vessel. Cell-specific knockout of KLF4 in pericytes fully replicates this phenotype. <i>In vivo</i> imaging of limbal vessels demonstrates pericyte migration off-vessel, with rapid pericyte filopodial-like process formation between adjacent vessels. Accounting for off-vessel and on-vessel pericytes, we observe no pericyte loss relative to non-diabetic control retina. These findings reveal the possibility that pericyte perturbations in location and process formation may play a role in the development of pathological vascular remodeling in diabetic retinopathy.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1379
Author(s):  
Dongjoon Kim ◽  
Hiromi Sesaki ◽  
Sayon Roy

High glucose (HG)-induced Drp1 overexpression contributes to mitochondrial dysfunction and promotes apoptosis in retinal endothelial cells. However, it is unknown whether inhibiting Drp1 overexpression protects against the development of retinal vascular cell loss in diabetes. To investigate whether reduced Drp1 level is protective against diabetes-induced retinal vascular lesions, four groups of mice: wild type (WT) control mice, streptozotocin (STZ)-induced diabetic mice, Drp1+/− mice, and STZ-induced diabetic Drp1+/− mice were examined after 16 weeks of diabetes. Western Blot analysis indicated a significant increase in Drp1 expression in the diabetic retinas compared to those of WT mice; retinas of diabetic Drp1+/− mice showed reduced Drp1 level compared to those of diabetic mice. A significant increase in the number of acellular capillaries (AC) and pericyte loss (PL) was observed in the retinas of diabetic mice compared to those of the WT control mice. Importantly, a significant decrease in the number of AC and PL was observed in retinas of diabetic Drp1+/− mice compared to those of diabetic mice concomitant with increased expression of pro-apoptotic genes, Bax, cleaved PARP, and increased cleaved caspase-3 activity. Preventing diabetes-induced Drp1 overexpression may have protective effects against the development of vascular lesions, characteristic of diabetic retinopathy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


2021 ◽  
Author(s):  
Moataz Dowaidar

Autophagy is a double-edged sword in cancer, and numerous aspects should be taken into account before deciding on the most effective strategy to target the process. The fact that several clinical studies are now ongoing does not mean that the patient group that may benefit from autophagy-targeting medicines has been identified. Autophagy inhibitors that are more potent and specialized, as well as autophagy indicators, are also desperately required. The fact that these inhibitors only work against tumors that rely on autophagy for survival (RAS mutants) makes it difficult to distinguish them from tumors that continue to develop even when autophagy is absent. Furthermore, mutations such as BRAF have been shown to make tumors more susceptible to autophagy suppression, suggesting that targeting such tumours may be a viable strategy for overcoming their chemotherapy resistance. In the meantime, we are unable to identify if autophagy regulation works in vivo or whether it selectively targets a disease while inflicting injury to other healthy organs and tissues. A cell-type-specific impact appears to be observed with such therapy. As a result, it is just as important to consider the differences between tumors that originate in different organs as it is to consider the signaling pathways that are similar across them. For a therapy or cure to be effective, the proposed intervention must be tailored to the specific needs of each patient.Over the last several years, a growing amount of data has implicated autophagy in a variety of disorders, including cancer. In normal cells, this catabolic process is also required for cell survival and homeostasis. Despite the fact that medications targeting intermediates in the autophagy signaling pathway are being created and evaluated at both the preclinical and clinical levels, given the complicated function of autophagy in cancer, we still have a long way to go in terms of establishing an effective therapeutic approach. This article discusses current tactics for exploiting cancer cells' autophagy dependency, as well as obstacles in the area. We believe that the unanswered concerns raised in this work will stimulate researchers to investigate previously unknown connections between autophagy and other signaling pathways, which might lead to the development of novel, highly specialized autophagy therapies.


2021 ◽  
Author(s):  
Priyamvada M. Pitale ◽  
Irina V. Saltykova ◽  
Yvonne Adu-Agyeiwaah ◽  
Sergio Li Calzi ◽  
Takashi Satoh ◽  
...  

The current understanding of molecular pathogenesis of diabetic retinopathy does not provide a mechanistic link between early molecular changes and the subsequent progression of the disease. In this study, we found that human diabetic retinas overexpressed TRIB3 and investigated the role of TRIB3 in diabetic retinal pathobiology in mice. We discovered that TRIB3 controlled major molecular events in early diabetic retinas via HIF1α-mediated regulation of retinal glucose flux, reprograming cellular metabolism, and governing inflammatory gene expression. These early molecular events further defined the development of neurovascular deficit observed in mice with diabetic retinopathy. TRIB3 ablation in STZ-induced mouse model led to significant RGC survival and functional restoration accompanied by a dramatic reduction in pericyte loss and acellular capillary formation. Under hypoxic conditions, TRIB3 contributed to advanced proliferative stages by significant upregulation of GFAP and VEGF expression, thus controlling gliosis and aberrant vascularization in OIR mouse retinas. Overall, our data reveal that TRIB3 is a master regulator of diabetic retinal pathophysiology that may accelerate the onset and progression of diabetic retinopathy to proliferative stages in humans and present TRIB3 as a potentially novel therapeutic target for diabetic retinopathy.


Blood ◽  
2012 ◽  
Vol 119 (5) ◽  
pp. 1302-1313 ◽  
Author(s):  
Cheng-Hsiang Kuo ◽  
Po-Ku Chen ◽  
Bi-Ing Chang ◽  
Meng-Chen Sung ◽  
Chung-Sheng Shi ◽  
...  

AbstractLewis Y Ag (LeY) is a cell-surface tetrasaccharide that participates in angiogenesis. Recently, we demonstrated that LeY is a specific ligand of the recombinant lectin-like domain of thrombomodulin (TM). However, the biologic function of interaction between LeY and TM in endothelial cells has never been investigated. Therefore, the role of LeY in tube formation and the role of the recombinant lectin-like domain of TM—TM domain 1 (rTMD1)—in antiangiogenesis were investigated. The recombinant TM ectodomain exhibited lower angiogenic activity than did the recombinant TM domains 2 and 3. rTMD1 interacted with soluble LeY and membrane-bound LeY and inhibited soluble LeY-mediated chemotaxis of endothelial cells. LeY was highly expressed on membrane ruffles and protrusions during tube formation on Matrigel. Blockade of LeY with rTMD1 or Ab against LeY inhibited endothelial tube formation in vitro. Epidermal growth factor (EGF) receptor in HUVECs was LeY modified. rTMD1 inhibited EGF receptor signaling, chemotaxis, and tube formation in vitro, and EGF-mediated angiogenesis and tumor angiogenesis in vivo. We concluded that LeY is involved in vascular endothelial tube formation and rTMD1 inhibits angiogenesis via interaction with LeY. Administration of rTMD1 or recombinant adeno-associated virus vector carrying TMD1 could be a promising antiangiogenesis strategy.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


Sign in / Sign up

Export Citation Format

Share Document