Organization of Chromosomal DNA by SMC Complexes

2019 ◽  
Vol 53 (1) ◽  
pp. 445-482 ◽  
Author(s):  
Stanislau Yatskevich ◽  
James Rhodes ◽  
Kim Nasmyth

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.

Genetics ◽  
2002 ◽  
Vol 160 (2) ◽  
pp. 805-813 ◽  
Author(s):  
Edward S Davis ◽  
Lucia Wille ◽  
Barry A Chestnut ◽  
Penny L Sadler ◽  
Diane C Shakes ◽  
...  

Abstract Two genes, originally identified in genetic screens for Caenorhabditis elegans mutants that arrest in metaphase of meiosis I, prove to encode subunits of the anaphase-promoting complex or cyclosome (APC/C). RNA interference studies reveal that these and other APC/C subunits are essential for the segregation of chromosomal homologs during meiosis I. Further, chromosome segregation during meiosis I requires APC/C functions in addition to the release of sister chromatid cohesion.


Genetics ◽  
1994 ◽  
Vol 136 (3) ◽  
pp. 953-964 ◽  
Author(s):  
D P Moore ◽  
W Y Miyazaki ◽  
J E Tomkiel ◽  
T L Orr-Weaver

Abstract We describe a Drosophila mutation, Double or nothing (Dub), that causes meiotic nondisjunction in a conditional, dominant manner. Previously isolated mutations in Drosophila specifically affect meiosis either in females or males, with the exception of the mei-S332 and ord genes which are required for proper sister-chromatid cohesion. Dub is unusual in that it causes aberrant chromosome segregation almost exclusively in meiosis I in both sexes. In Dub mutant females both nonexchange and exchange chromosomes undergo nondisjunction, but the effect of Dub on nonexchange chromosomes is more pronounced. Dub reduces recombination levels slightly. Multiple nondisjoined chromosomes frequently cosegregate to the same pole. Dub results in nondisjunction of all chromosomes in meiosis I of males, although the levels are lower than in females. When homozygous, Dub is a conditional lethal allele and exhibits phenotypes consistent with cell death.


2018 ◽  
Vol 217 (10) ◽  
pp. 3343-3353 ◽  
Author(s):  
Sara Carvalhal ◽  
Alexandra Tavares ◽  
Mariana B. Santos ◽  
Mihailo Mirkovic ◽  
Raquel A. Oliveira

Sister chromatid cohesion mediated by cohesin is essential for mitotic fidelity. It counteracts spindle forces to prevent premature chromatid individualization and random genome segregation. However, it is unclear what effects a partial decline of cohesin may have on chromosome organization. In this study, we provide a quantitative analysis of cohesin decay by inducing acute removal of defined amounts of cohesin from metaphase-arrested chromosomes. We demonstrate that sister chromatid cohesion is very resistant to cohesin loss as chromatid disjunction is only observed when chromosomes lose >80% of bound cohesin. Removal close to this threshold leads to chromosomes that are still cohered but display compromised chromosome alignment and unstable spindle attachments. Partial cohesin decay leads to increased duration of mitosis and susceptibility to errors in chromosome segregation. We propose that high cohesin density ensures centromeric chromatin rigidity necessary to maintain a force balance with the mitotic spindle. Partial cohesin loss may lead to chromosome segregation errors even when sister chromatid cohesion is fulfilled.


2019 ◽  
Author(s):  
Pilar Gutierrez-Escribano ◽  
Matthew D. Newton ◽  
Aida Llauró ◽  
Jonas Huber ◽  
Loredana Tanasie ◽  
...  

AbstractEssential processes such as accurate chromosome segregation, regulation of gene expression and DNA repair rely on protein-mediated DNA tethering. Sister chromatid cohesion requires the SMC complex cohesin to act as a protein linker that holds replicated chromatids together (1, 2). The molecular mechanism by which cohesins hold sister chromatids has remained controversial. Here, we used a single molecule approach to visualise the activity of cohesin complexes as they hold DNA molecules. We describe a DNA bridging activity that requires ATP and is conserved from yeast to human cohesin. We show that cohesin can form two distinct classes of bridges at physiological conditions, a “permanent bridge” able to resists high force (over 80pN) and a “reversible bridge” that breaks at lower forces (5-40pN). Both classes of bridges require Scc2/Scc4 in addition to ATP. We demonstrate that bridge formation requires physical proximity of the DNA segments to be tethered and show that “permanent” cohesin bridges can move between two DNA molecules but cannot be removed from DNA when they occur in cis. This suggests that separate physical compartments in cohesin molecules are involved in the bridge. Finally, we show that cohesin tetramers, unlike condensin, cannot compact linear DNA molecules against low force, demonstrating that the core activity of cohesin tetramers is bridging DNA rather than compacting it. Our findings carry important implications for the understanding of the basic mechanisms behind cohesin-dependent establishment of sister chromatid cohesion and chromosome architecture.


2018 ◽  
Author(s):  
Yuehong Yang ◽  
Wei Wang ◽  
Min Li ◽  
Wen Zhang ◽  
Yuliang Huang ◽  
...  

AbstractSister chromatid cohesion plays a key role in ensuring precise chromosome segregation during mitosis, which is mediated by the multisubunit complex cohesin. However, the molecular regulation of cohesin subunits stability remains unclear. Here, we show that NudCL2 (NudC-like protein 2) is essential for the stability of cohesin subunits by regulating Hsp90 ATPase activity in mammalian cells. Depletion of NudCL2 induces mitotic defects and premature sister chromatid separation and destabilizes cohesin subunits that interact with NudCL2. Similar defects are also observed upon inhibition of Hsp90 ATPase activity. Interestingly, ectopic expression of Hsp90 efficiently rescues the protein instability and functional deficiency of cohesin induced by NudCL2 depletion, but not vice versa. Moreover, NudCL2 not only binds to Hsp90, but also significantly modulates Hsp90 ATPase activity and promotes the chaperone function of Hsp90. Taken together, these data suggest that NudCL2 is a previously undescribed Hsp90 cochaperone to modulate sister chromatid cohesion by stabilizing cohesin subunits, providing a hitherto unrecognized mechanism that is crucial for faithful chromosome segregation during mitosis.


2009 ◽  
Vol 20 (17) ◽  
pp. 3818-3827 ◽  
Author(s):  
Tessie M. Ng ◽  
William G. Waples ◽  
Brigitte D. Lavoie ◽  
Sue Biggins

Accurate chromosome segregation depends on sister kinetochores making bioriented attachments to microtubules from opposite poles. An essential regulator of biorientation is the Ipl1/Aurora B protein kinase that destabilizes improper microtubule–kinetochore attachments. To identify additional biorientation pathways, we performed a systematic genetic analysis between the ipl1-321 allele and all nonessential budding yeast genes. One of the mutants, mcm21Δ, precociously separates pericentromeres and this is associated with a defect in the binding of the Scc2 cohesin-loading factor at the centromere. Strikingly, Mcm21 becomes essential for biorientation when Ipl1 function is reduced, and this appears to be related to its role in pericentromeric cohesion. When pericentromeres are artificially tethered, Mcm21 is no longer needed for biorientation despite decreased Ipl1 activity. Taken together, these data reveal a specific role for pericentromeric linkage in ensuring kinetochore biorientation.


2019 ◽  
Author(s):  
Jonay Garcia-Luis ◽  
Luciana Lazar-Stefanita ◽  
Pilar Gutierrez-Escribano ◽  
Agnes Thierry ◽  
Alicia García ◽  
...  

AbstractCohesin is a key regulator of genome architecture with roles in sister chromatid cohesion 1,2 and the organisation of higher-order structures during interphase 3 and mitosis 4,5. The recruitment and mobility of cohesin complexes on DNA is restricted by nucleosomes 6-8. Here we show that cohesin role in chromosome organisation requires the histone chaperone FACT. Depletion of FACT in metaphase cells affects cohesin stability on chromatin reducing its accumulation at pericentric regions and binding on chromosome arms. Using Hi-C, we show that cohesin-dependent TAD (Topological Associated Domains)-like structures in G1 and metaphase chromosomes are disrupted in the absence of FACT. Surprisingly, sister chromatid cohesion is intact in FACT-depleted cells, although chromosome segregation failure is observed. Our results uncover a role for FACT in genome organisation by facilitating cohesin-dependent compartmentalization of chromosomes into loop domains.


2018 ◽  
Author(s):  
Tisha Bohr ◽  
Christian R. Nelson ◽  
Stefani Giacopazzi ◽  
Piero Lamelza ◽  
Needhi Bhalla

AbstractThe conserved factor Shugoshin is dispensable in C. elegans for the two-step loss of sister chromatid cohesion that directs the proper segregation of meiotic chromosomes. We show that the C. elegans ortholog of Shugoshin, SGO-1, is required for checkpoint activity in meiotic prophase. This role in checkpoint function is similar to that of the meiotic chromosomal protein, HTP-3. Null sgo-1 mutants exhibit additional phenotypes similar to that of a partial loss of function allele of HTP-3: premature synaptonemal complex disassembly, the activation of alternate DNA repair pathways and an inability to recruit a conserved effector of the DNA damage pathway, HUS-1. SGO-1 localizes to pre-meiotic nuclei, when HTP-3 is present but not yet loaded onto chromosome axes, suggesting an early role in regulating meiotic chromosome metabolism. We propose that SGO-1 acts during pre-meiotic replication to ensure fully functional meiotic chromosome architecture, rendering these chromosomes competent for checkpoint activity and normal progression of meiotic recombination. Given that most research on Shugoshin has been focused on its regulation of sister chromatid cohesion in meiosis, this novel role may be conserved but previously uncharacterized in other organisms. Further, our findings expand the repertoire of Shugoshin’s functions beyond coordinating regulatory activities at the centromere.


Sign in / Sign up

Export Citation Format

Share Document