scholarly journals Genetical engineered lung cancer cell for analyzing Epithelial-Mesenchymal transition

2019 ◽  
Author(s):  
Michał Kiełbus ◽  
Jakub Czapiński ◽  
Joanna Kałafut ◽  
Justyna Woś ◽  
Andrzej Stepulak ◽  
...  

AbstractCell plasticity, defined as the ability to undergo phenotypical transformation in a reversible manner, is a physiological processes that also exert important roles in disease progression Two forms of cellular plasticity are epithelial-mesenchymal transition (EMT) and its inverse process, mesenchymal-epithelial transition (MET). These processes have been correlated to the poor outcome of different types of neoplasias as well as drug resistance development. Since EMT/MET are transitional processes, we have generated and validated a reporter cell line. Specifically, a far-red fluorescent protein was knocked-in in-frame with the mesenchymal gene marker VIMENTIN (VIM) in H2170 lung cancer cells. The vimentin reporter cells (VRCs) are a reliable model for studying EMT and MET showing cellular plasticity upon a series of stimulations. These cells are a robust platform to dissect the molecular mechanisms of these processes, and for drug discovery in vitro and in the future in vivo.

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1644
Author(s):  
Michał Kiełbus ◽  
Jakub Czapiński ◽  
Joanna Kałafut ◽  
Justyna Woś ◽  
Andrzej Stepulak ◽  
...  

Cell plasticity, defined as the ability to undergo phenotypical transformation in a reversible manner, is a physiological process that also exerts important roles in disease progression. Two forms of cellular plasticity are epithelial–mesenchymal transition (EMT) and its inverse process, mesenchymal–epithelial transition (MET). These processes have been correlated to the poor outcome of different types of neoplasias as well as drug resistance development. Since EMT/MET are transitional processes, we generated and validated a reporter cell line. Specifically, a far-red fluorescent protein was knocked-in in-frame with the mesenchymal gene marker VIMENTIN (VIM) in H2170 lung cancer cells. The vimentin reporter cells (VRCs) are a reliable model for studying EMT and MET showing cellular plasticity upon a series of stimulations. These cells are a robust platform to dissect the molecular mechanisms of these processes, and for drug discovery in vitro and in vivo in the future.


2021 ◽  
Vol 10 ◽  
Author(s):  
Wu-Ping Zheng ◽  
Feng-Ying Huang ◽  
Shu-Zhen Dai ◽  
Jin-Yan Wang ◽  
Ying-Ying Lin ◽  
...  

Toxicarioside O (TCO), a natural product derived from Antiaris toxicaria, has been identified to be a promising anticancer agent. In this study, we aimed to investigate the effect of TCO on the proliferation and epithelial-mesenchymal transition (EMT) of lung cancer cells and its molecular mechanisms. Here, we indicated that TCO inhibits the proliferation of lung cancer cells both in vitro and in vivo. Our results demonstrated that TCO induces apoptosis in lung cancer cells. Moreover, we found that TCO suppresses EMT program and inhibits cell migration in vitro. Mechanistically, TCO decreases the expression of trophoblast cell surface antigen 2 (Trop2), resulting in inhibition of the PI3K/Akt pathway and EMT program. Overexpression of Trop2 rescues TCO-induced inhibition of cell proliferation and EMT. Our findings demonstrate that TCO markedly inhibits cell proliferation and EMT in lung cancer cells and provides guidance for its drug development.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Hongli Li ◽  
Qingjie Mu ◽  
Guoxin Zhang ◽  
Zhixin Shen ◽  
Yuanyuan Zhang ◽  
...  

AbstractIncreasing lines of evidence indicate the role of long non-coding RNAs (LncRNAs) in gene regulation and tumor development. Hence, it is important to elucidate the mechanisms of LncRNAs underlying the proliferation, metastasis, and invasion of lung adenocarcinoma (LUAD). We employed microarrays to screen LncRNAs in LUAD tissues with and without lymph node metastasis and revealed their effects on LUAD. Among them, Linc00426 was selected for further exploration in its expression, the biological significance, and the underlying molecular mechanisms. Linc00426 exhibits ectopic expression in LUAD tissues and cells. The ectopic expression has been clinically linked to tumor size, lymphatic metastasis, and tumor differentiation of patients with LUAD. The deregulation of Linc00426 contributes to a notable impairment in proliferation, invasion, metastasis, and epithelial–mesenchymal transition (EMT) in vitro and in vivo. Mechanistically, the deregulation of Linc00426 could reduce cytoskeleton rearrangement and matrix metalloproteinase expression. Meanwhile, decreasing the level of Linc00426 or increasing miR-455-5p could down-regulate the level of UBE2V1. Thus, Linc00426 may act as a competing endogenous RNA (ceRNA) to abate miR-455-5p-dependent UBE2V1 reduction. We conclude that Linc00426 accelerates LUAD progression by acting as a molecular sponge to regulate miR-455-5p, and may be a potential novel tumor marker for LUAD.


2019 ◽  
Vol 97 (6) ◽  
pp. 767-776 ◽  
Author(s):  
Yufu Tang ◽  
Lijian Wu ◽  
Mingjing Zhao ◽  
Guangdan Zhao ◽  
Shitao Mao ◽  
...  

Long noncoding RNA small nucleolar RNA host gene 4 (SNHG4) is usually up-regulated in cancer and regulates the malignant behavior of cancer cells. However, its role in lung cancer remains elusive. In this study, we silenced the expression of SNHG4 in NCI-H1437 and SK-MES-1, two representative non-small-cell lung cancer cell lines, by transfecting them with siRNA (small interfering RNA) that specifically targets SNHG4. We observed significantly inhibited cell proliferation in vitro and reduced tumor growth in vivo after SNHG4 silencing. SNHG4 knockdown also led to cell cycle arrest at the G1 phase, accompanied with down-regulation of cyclin-dependent kinases CDK4 and CDK6. The migration and invasiveness of these two cell lines were remarkably inhibited after SNHG4 silencing. Moreover, our study revealed that the epithelial–mesenchymal transition (EMT) of lung cancer cells was suppressed by SNHG4 silencing, as evidenced by up-regulated E-cadherin and down-regulated SALL4, Twist, and vimentin. In addition, we found that SNHG4 silencing induced up-regulation of miR-98-5p. MiR-98-5p inhibition abrogated the effect of SNHG4 silencing on proliferation and invasion of lung cancer cells. In conclusion, our findings demonstrate that SNHG4 is required by lung cancer cells to maintain malignant phenotype. SNHG4 probably exerts its pro-survival and pro-metastatic effects by sponging anti-tumor miR-98-5p.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yanyang Cao ◽  
Xuan Wang ◽  
Yunsheng Li ◽  
Maria Evers ◽  
Haiyun Zhang ◽  
...  

Abstract Background Extracellular ATP (eATP) was shown to induce epithelial–mesenchymal transition (EMT), a very important early process in metastasis, in cancer cells via purinergic receptor signaling. However, the exact induction mechanisms are far from fully known. We previously described that eATP is internalized by cancer cells in vitro and in vivo by macropinocytosis in human non-small cell lung cancer A549 and other cancer cells, drastically elevates intracellular ATP levels, enhances cell proliferation and resistance to anticancer drugs. In this study, we tested the hypothesis that eATP and macropinocytosis-internalized eATP also induces EMT and other early steps of metastasis. Methods Floating cells, fencing, and transwell assays were used to show that ATP induces cell detachment, new colony formation, migration and invasion in human A549 and other lung cancer cells. Western blots were used to detect ATP-induced changes in EMT-related proteins; Confocal microscopy was used to demonstrate ATP-induced metastasis-related cell morphological changes. Inhibitors and siRNA knockdowns were used to determine P2X7’s involvement in the ATP-induced EMT. CRISPR–Cas9 knockout of the SNX5 gene was used to identify macropinocytosis’ roles in EMT and cancer cell growth both in vitro and in vivo. Student t-test and one-way ANOVA were used to determine statistical significance, P < 0.05 was considered significant. Results eATP potently induces expression of matrix metallopeptidases (MMPs), and detachment, EMT, migration, and invasion of lung cancer cells. The induction was independent of TGF-β and semi-independent of P2X7 activation. eATP performs these functions not only extracellularly, but also intracellularly after being macropinocytically internalized to further enhance P2X7-mediated EMT, filopodia formation and other early steps of metastasis. The knockout of macropinocytosis-associated SNX5 gene significantly reduces macropinocytosis, slows down tumor growth, and changes tumor morphology in nude mice. Conclusions Collectively, these results show that eATP's functions in these processes not only from outside of cancer cells but also inside after being macropinocytotically internalized. These findings shed light on eATP’s initiator and effector roles in almost every step in early metastasis, which calls for rethinking and rebalancing energy equations of intracellular biochemical reactions and the Warburg effect, and identifies eATP and macropinocytosis as novel targets for potentially slowing down EMT and preventing metastasis.


2018 ◽  
Vol 96 (3) ◽  
pp. 326-331 ◽  
Author(s):  
Ping He ◽  
Xiaojie Jin

Objective: The aim of this study was to investigate the role of SOX10 in nasopharyngeal carcinoma (NPC) and the underlying molecular mechanisms. Methods: The expression of SOX10 was initially assessed in human NPC tissues and a series of NPC cell lines through quantitative real-time PCR (qRT-PCR) and Western blot. Then, cell proliferation, cycle, migration, and the invasiveness of NPC cells with knockdown of SOX10 were examined by MTT, flow cytometry, and Transwell migration and invasion assays, respectively. Finally, nude mice tumorigenicity experiments were performed to evaluate the effects of SOX10 on NPC growth and metastasis in vivo. Results: SOX10 was significantly increased in NPC tissues and cell lines. In-vitro experiments revealed that loss of SOX10 obviously inhibited cell proliferation, migration, and invasiveness, as well as the epithelial–mesenchymal transition (EMT) process in NPC cells. In-vivo experiments further demonstrated that disrupted SOX10 expression restrained NPC growth and metastasis, especially in lung and liver. Conclusion: Taken together, our data confirmed the role of SOX10 as an oncogene in NPC progression, and revealed that SOX10 may serve as a novel biomarker for diagnosis of NPC, as well as a potential therapeutic target against this disease.


2020 ◽  
Author(s):  
You Yu ◽  
Zhimeng Wang ◽  
Zan Huang ◽  
Xianying Tang ◽  
Wenhua Li

Abstract Background C1orf61 is a specific transcriptional activator that is highly up-regulated during weeks 4–9 of human embryogenesis, the period in which most organs develop. We have previously demonstrated that C1orf61 acts as a tumor activator in human hepatocellular carcinoma (HCC) tumorigenesis and metastasis. However, the underlying molecular mechanisms of tumor initiation and progression in HCC remain obscure. Methods In this study, we demonstrated that the pattern of C1orf61 expression was closely correlated with metastasis in liver cancer cells. Gene expression profiling analysis indicated that C1orf61 regulated diverse genes related to cell growth, migration, invasion and epithelial-mesenchymal transition (EMT). Results Results showed that C1orf61 promotes hepatocellular carcinoma metastasis by inducing cellular EMT in vivo and in vitro. Moreover, C1orf61-induced cellular EMT and migration are involved in the activation of the STAT3 and Akt cascade pathways. We also found that C1orf61 was associated with HBV infection-induced cell migration in HCC. In addition, C1orf61 expression improved the efficacy of the anticancer therapy sorafenib in HCC patients. For the first time, we report a regulatory pathway by which C1orf61 promoted cancer cell metastasis and regulated the therapeutic response to sorafenib. Conclusions These findings increased our understanding of the molecular events that regulate metastasis and treatment in HCC.


2018 ◽  
Vol 50 (5) ◽  
pp. 1815-1831 ◽  
Author(s):  
Xianling Zeng ◽  
Yafei Zhang ◽  
Huiqiu Xu ◽  
Taohong Zhang ◽  
Yan Xue ◽  
...  

Background/Aims: Choriocarcinoma (CC) is a highly aggressive gestational trophoblastic neoplasia; however, the underlying molecular mechanisms of its invasiveness and metastasis remain poorly understood. Human secreted frizzled-related protein 2 (SFRP2) could function as a tumor promoter or suppressor in different tumors, yet the role it plays in CC’s invasion and metastasis is thoroughly unclear. The current study was aimed to explore the function and underlying mechanism of SFRP2 in CC. Methods: The expression of SFRP2 in CC tissues was examined via immunohistochemistry. The methylation level and expression of SFRP2 in CC cell lines, JEG-3 and JAR were examined via bisulfite sequencing PCR (BSP), western blotting and quantitative RT-PCR. The biological role of increasing expressed SFRP2 through its promoter demethylation with 5-Aza-2’-deoxycytidine (5-Aza) was examined by a series of in vitro functional studies. Furthermore, lentivirus transfection technology was adopted to investigate the biological roles of SFRP2 knockdown in JEG-3 and JAR cells in vitro and in vivo. Moreover, its downstream signaling pathway was investigated. Results: SFRP2 was downregulated in CC tissues, and its expression was inversely related to its promoter hypermethylation frequency in JEG-3 and JAR cells. Increased SFRP2 through its promoter demethylation inhibited cell migration, invasion and colony formation in JEG-3 and JAR cells, whereas decreased SFRP2 reversed the epithelial-mesenchymal transition (EMT) process and stemness in JEG-3 and JAR cells both in vitro and vivo. Mechanistically, SFRP2 regulated the EMT and stemness of CC cell lines via canonical Wnt/β-catenin signaling, validated by the usage of a Wnt activator and inhibitor. Conclusion: The current study indicates that downregulated SFRP2 has potent tumor-promotive effects in CC through the modulation of cancer stemness and the EMT phenotype via activation of Wnt/β-catenin signaling in vitro and in vivo.


Author(s):  
Hua Zhang ◽  
Xiuquan He ◽  
Wenfei Yu ◽  
Bingqing Yue ◽  
Ziting Yu ◽  
...  

As the noncatalytic subunit of mammalian DNA polymerase, mitotic arrest-deficient protein 2B (MAD2B) has been reported to play a role in cell cycle regulation, DNA damage tolerance, gene expression, and carcinogenesis. Although its expression is known to be associated with poor prognosis in several types of human cancers, the significance of MAD2B expression in lung malignancies is still unclear. Our study showed that MAD2B expression significantly increased in lung cancer, especially in the metastatic tissues. We also found that knockdown of MAD2B inhibited the migration, invasion, and epithelial‐mesenchymal transition of lung cancer cells in vitro and the metastasis in vivo, while overexpression of MAD2B had the opposite effect. Microarray and Western blotting data indicated that slug might be its downstream target since knockdown of MAD2B inhibited, while overexpression increased, the expression of slug. Moreover, the expression of MAD2B was found to be positively correlated with slug in lung cancer tissues as well. Collectively, these findings indicate an oncogenic role of MAD2B in lung cancer, and slug might be involved in the process.


Sign in / Sign up

Export Citation Format

Share Document