scholarly journals Transient Reprogramming of Neonatal Cardiomyocytes to a Proliferative Dedifferentiated State

2019 ◽  
Author(s):  
Thomas Kisby ◽  
Irene de Lázaro ◽  
Maria Stylianou ◽  
Giulio Cossu ◽  
Kostas Kostarelos

AbstractZebrafish and urodele amphibians are capable of extraordinary myocardial regeneration thanks to the ability of their cardiomyocytes to undergo transient dedifferentiation and proliferation. Somatic cells can be temporarily reprogrammed to a proliferative, dedifferentiated state through transient expression of Oct3/4, Sox2, Klf4 and c-Myc (OSKM) transcription factors. Here, we utilized an OSKM-encoding non-integrating vector to induce transient reprogramming of mammalian cardiomyocytes in vitro. Reprogramming factor expression in neonatal rat cardiomyocytes triggered rapid cell dedifferentiation characterized by downregulation of cardiomyocyte specific gene and protein expression, sarcomere dis-assembly and loss of autorhythmic contractile activity. Concomitantly, a significant increase in cell cycle related gene expression and Ki67 positive cells was observed, indicating that dedifferentiated cardiomyocytes possess an enhanced proliferative capacity. A small proportion of cardiomyocytes progressed through mesenchymal to epithelial transition, further indicating the initiation of cell reprogramming. However, complete reprogramming to a pluripotent-like state was not achieved for the duration of the study (20 days), both in standard and embryonic stem cell culture media conditions. The transient nature of this partial reprogramming response was confirmed as cardiomyocyte-specific cell morphology, gene expression and contractile activity were recovered by day 15 after viral transduction. Further investigations into the complete downstream biological effects of ectopic OSKM expression in cardiomyocytes and the fate of these reprogrammed cells are warranted. Our results to date suggest that transient reprogramming could be a feasible strategy to recapitulate regenerative mechanisms of lower vertebrates and inform direct gene therapy approaches to cardiac regenerative medicine.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2010 ◽  
Vol 298 (3) ◽  
pp. H853-H860 ◽  
Author(s):  
Evren U. Azeloglu ◽  
Kevin D. Costa

To study how the dynamic subcellular mechanical properties of the heart relate to the fundamental underlying process of actin-myosin cross-bridge cycling, we developed a novel atomic force microscope elastography technique for mapping spatiotemporal stiffness of isolated, spontaneously beating neonatal rat cardiomyocytes. Cells were indented repeatedly at a rate close but unequal to their contractile frequency. The resultant changes in pointwise apparent elastic modulus cycled at a predictable envelope frequency between a systolic value of 26.2 ± 5.1 kPa and a diastolic value of 7.8 ± 4.1 kPa at a representative depth of 400 nm. In cells probed along their major axis, spatiotemporal changes in systolic stiffness displayed a heterogeneous pattern, reflecting the banded sarcomeric structure of underlying myofibrils. Treatment with blebbistatin eliminated contractile activity and resulted in a uniform apparent modulus of 6.5 ± 4.8 kPa. This study represents the first quantitative dynamic mechanical mapping of beating cardiomyocytes. The technique provides a means of probing the micromechanical effects of disease processes and pharmacological treatments on beating cardiomyocytes, providing new insights and relating subcellular cardiac structure and function.


Hypertension ◽  
2021 ◽  
Vol 78 (5) ◽  
pp. 1541-1554
Author(s):  
Hongyun Wang ◽  
Rusitanmujiang Maimaitiaili ◽  
Jianhua Yao ◽  
Yuling Xie ◽  
Sujing Qiang ◽  
...  

Plasma circulating extracellular vesicles (EVs) have been utilized as a potential therapeutic strategy to treat ischemic disease through intramyocardial injection (efficient but invasive) or tail vein injection (noninvasive but low cardiac retention). An effective and noninvasive delivery of EVs for future clinical use is necessary. The large animal (canine) model was complemented with a murine ischemia-reperfusion injury (IRI) model, as well as H9 human embryonic stem cell–induced cardiomyocytes or neonatal rat cardiomyocytes to investigate the effective delivery method and the role of plasma EVs in the IRI model. We further determine the crucial molecule within EVs that confers the cardioprotective role in vivo and in vitro and investigate the efficiency of CHP (cardiac homing peptide)-linked EVs in alleviating IRI. D-SPECT imaging showed that percutaneous intracoronary delivery of EVs reduced infarct extent in dogs. CHP-EVs further reduced IRI-induced cardiomyocyte apoptosis in mice and neonatal rat cardiomyocytes. Mechanistically, administration of EVs by percutaneous intracoronary delivery (in dog) and myocardial injection (in mice) just before reperfusion reduced infarct size of IRI by increasing miR-486 levels. miR-486–deleted EVs exacerbated oxygen-glucose deprivation/reoxygenation–induced human embryonic stem cell–induced cardiomyocytes and neonatal rat cardiomyocyte apoptosis. EV-miR-486 inhibited the PTEN (phosphatase and tensin homolog deleted on chromosome ten) expression and then promoted AKT (protein kinase B) activation in human embryonic stem cell–induced cardiomyocytes and neonatal rat cardiomyocytes. In conclusion, plasma-derived EVs convey miR-486 to the myocardium and attenuated IRI-induced infarction and cardiomyocyte apoptosis. CHP strategy was effective to improve cardiac retention of EVs in mice (in vivo) and dogs (ex vivo).


2021 ◽  
Author(s):  
Dmitry Velmeshev ◽  
Manideep Chavali ◽  
Tomasz Jan Nowakowski ◽  
Mohini Bhade ◽  
Simone Mayer ◽  
...  

Cortical interneurons are indispensable for proper function of neocortical circuits. Changes in interneuron development and function are implicated in human disorders, such as autism spectrum disorder and epilepsy. In order to understand human-specific features of cortical development as well as the origins of neurodevelopmental disorders it is crucial to identify the molecular programs underlying human interneuron development and subtype specification. Recent studies have explored gene expression programs underlying mouse interneuron specification and maturation. We applied single-cell RNA sequencing to samples of second trimester human ganglionic eminence and developing cortex to identify molecularly defined subtypes of human interneuron progenitors and immature interneurons. In addition, we integrated this data from the developing human ganglionic eminences and neocortex with single-nucleus RNA-seq of adult cortical interneurons in order to elucidate dynamic molecular changes associated with commitment of progenitors and immature interneurons to mature interneuron subtypes. By comparing our data with published mouse single-cell genomic data, we discover a number of divergent gene expression programs that distinguish human interneuron progenitors from mouse. Moreover, we find that a number of transcription factors expressed during prenatal development become restricted to adult interneuron subtypes in the human but not the mouse, and these adult interneurons express species- and lineage-specific cell adhesion and synaptic genes. Therefore, our study highlights that despite the similarity of main principles of cortical interneuron development and lineage commitment between mouse and human, human interneuron genesis and subtype specification is guided by species-specific gene programs, contributing to human-specific features of cortical inhibitory interneurons.


2000 ◽  
Vol 381 (1) ◽  
pp. 67-73 ◽  
Author(s):  
Annemieke J. van Wamel ◽  
Cindy Ruwhof ◽  
Lizet J. van der Valk-Kokshoorn ◽  
Peter I. Schrier ◽  
Arnoud van der Laarse

2009 ◽  
Vol 21 (9) ◽  
pp. 101
Author(s):  
J. Antony ◽  
F. Oback ◽  
R. Broadhurst ◽  
S. Cole ◽  
C. Graham ◽  
...  

To produce live cloned mammals from adult somatic cells the nuclei of these cells must be first reprogrammed from a very restricted, cell lineage-specific gene expression profile to an embryo-like expression pattern, compatible with embryonic development. Although this has been achieved in a number of species the efficiency of cloning remains very low. Inadequate reprogramming of epigenetic marks in the donor cells correlated with aberrant embryonic gene expression profiles has been identified as a key cause of this inefficiency. Some of the most common epigenetic marks are chemical modifications of histones, the main structural proteins of chromatin. A range of different histone modifications, including acetylation and methylation, exists and can be attributed to either repression or activation of genes. One epigenetic mark which is known to be very stable and difficult to remove during reprogramming is the trimethylation of lysine 9 in histone H3 (H3K9Me3). To test the hypothesis that H3K9Me3 marks are a major stumbling block for successful cloning we are attempting to remove these marks by overexpression of the H3K9Me3 specific histone demethylase, jmjd2b, in donor cells, prior to their use for nuclear transfer. We have engineered mouse embryonic stem (ES) cells for the tet inducible expression of a fusion protein with a functional jmjd2b or non-functional mutant jmjd2b histone demethylase. Approximately 94% and 88% of the cells can be induced for the expression of functional and mutant jmjd2b-EGFP in the respective ES cell lines. Immunofluorescence analyses have shown that induction of functional jmjd2b-EGFP results in an approximately 50% reduction of H3K9Me3 levels compared to non-induced cells and induced mutant jmjd2b-EGFP cells. The comparison of the in-vitro embryo development following nuclear transfer with induced and non-induced donor cells show significantly better overall development to blastocysts and morulae from induced donor cells with reduced H3K9Me3 levels.


1996 ◽  
Vol 270 (4) ◽  
pp. C1228-C1235 ◽  
Author(s):  
P. A. Watson ◽  
R. Hannan ◽  
L. L. Carl ◽  
K. E. Giger

Experiments were performed to assess the ability of mechanical stimuli, experienced by ventricular cardiac myocytes during the progression of hypertrophic and dilated pathology, to increase the expression of desmin in cultured neonatal rat cardiac myocytes. Results indicate that both contractile activity and load due to passive stretch increase desmin content in neonatal rat cardiac myocytes through increased desmin gene transcription. Western blot analysis demonstrated that contraction induced a selective increase in desmin protein content in neonatal rat cardiac myocytes above increases observed in the content of total cellular protein. Northern blot analysis indicated that desmin mRNA content increased in response to contraction as well as to alpha-adrenergic stimulation. Desmin mRNA content also increased in cultured neonatal myocytes in response to stretch. Angiotensin II (ANG II) treatment of contracting neonatal cardiac myocytes further increased desmin mRNA content, whereas similar treatment in arrested neonatal cardiac myocytes further increased desmin mRNA content, whereas similar treatment in arrested neonatal cardiac myocytes failed to increase desmin mRNA. This contraction-dependent responsiveness to ANG II is not a function of increases in the density or relative subtype composition of ANG II receptors. Treatment of contracting neonatal rat cardiac myocytes with actinomycin D prevented increases in desmin mRNA content, suggesting regulation of transcription of the desmin gene by contraction. Nuclear run-on experiments indicate that contraction. Nuclear run-on experiments indicate that contraction increases transcription of the desmin gene in cardiac myocytes. These results are consistent with the modulation of desmin gene expression secondarily to changes in the mechanical environment that occur in cardiac tissue undergoing dilation or hypertrophy.


2020 ◽  
Vol 38 (1) ◽  
pp. 397-419
Author(s):  
Michael J. Shapiro ◽  
Virginia Smith Shapiro

T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.


2017 ◽  
Vol 2017 ◽  
pp. 1-18 ◽  
Author(s):  
Divya S. Varghese ◽  
Shama Parween ◽  
Mustafa T. Ardah ◽  
Bright Starling Emerald ◽  
Suraiya A. Ansari

Human embryonic stem cells (hESCs) are being used extensively in array of studies to understand different mechanisms such as early human embryogenesis, drug toxicity testing, disease modeling, and cell replacement therapy. The protocols for the directed differentiation of hESCs towards specific cell types often require long-term cell cultures. To avoid bacterial contamination, these protocols include addition of antibiotics such as pen-strep and gentamicin. Although aminoglycosides, streptomycin, and gentamicin have been shown to cause cytotoxicity in various animal models, the effect of these antibiotics on hESCs is not clear. In this study, we found that antibiotics, pen-strep, and gentamicin did not affect hESC cell viability or expression of pluripotency markers. However, during directed differentiation towards neural and hepatic fate, significant cell death was noted through the activation of caspase cascade. Also, the expression of neural progenitor markers Pax6, Emx2, Otx2, and Pou3f2 was significantly reduced suggesting that gentamicin may adversely affect early embryonic neurogenesis whereas no effect was seen on the expression of endoderm or hepatic markers during differentiation. Our results suggest that the use of antibiotics in cell culture media for the maintenance and differentiation of hESCs needs thorough investigation before use to avoid erroneous results.


Sign in / Sign up

Export Citation Format

Share Document