scholarly journals The cue-reactivity paradigm: An ensemble of networks driving attention and cognition when viewing drug-related and natural-reward stimuli

2020 ◽  
Author(s):  
Lauren D. Hill-Bowen ◽  
Michael C. Riedel ◽  
Ranjita Poudel ◽  
Taylor Salo ◽  
Jessica S. Flannery ◽  
...  

ABSTRACTBackgroundThe cue-reactivity paradigm is a widely adopted neuroimaging probe assessing brain activity linked to attention, memory, emotion, and reward processing associated with the presentation of appetitive stimuli. Lacking, is the apperception of more precise brain regions, neurocircuits, and mental operations comprising cue-reactivity’s multi-elemental nature. To resolve such complexities, we employed emergent meta-analytic techniques to enhance insight into drug and natural cue-reactivity in the brain.MethodsOperating from this perspective, we first conducted multiple coordinate-based meta-analyses to define common and distinct brain regions showing convergent activation across studies involving drug-related and natural-reward cue-reactivity paradigms. In addition, we examined the activation profiles of each convergent brain region linked to cue-reactivity as seeds in task-dependent and task-independent functional connectivity analyses. Using methods to cluster regions of interest, we categorized cue-reactivity into cliques, or sub-networks, based on the functional similarities between regions. Cliques were further classified with psychological constructs.ResultsWe identified a total of 164 peer-reviewed articles: 108 drug-related, and 56 natural-reward. When considering cue-reactivity collectively, across both drug and natural studies, activity convergence was observed in the dorsal striatum, limbic, insula, parietal, occipital, and temporal regions. Common convergent neural activity between drug and natural cue-reactivity was observed in the caudate, amygdala, thalamus, cingulate, and temporal regions. Drug distinct convergence was observed in the putamen, cingulate, and temporal regions, while natural distinct convergence was observed in the caudate, parietal, occipital, and frontal regions. We seeded identified cue-reactivity regions in meta-analytic connectivity modeling and resting-state functional connectivity analyses. Consensus hierarchical clustering of both connectivity analyses identified six distinct cliques that were further functionally characterized using the BrainMap and Neurosynth databases.ConclusionsWe examined the multifaceted nature of cue-reactivity and decomposed this construct into six elements of visual, executive function, sensorimotor, salience, emotion, and self-referential processing. Further, we demonstrated that these elements are supported by perceptual, sensorimotor, tripartite, and affective networks, which are essential to understanding the neural mechanisms involved in the development and or maintenance of addictive disorders.

2017 ◽  
Vol 31 (11) ◽  
pp. 1475-1484 ◽  
Author(s):  
Jason A Avery ◽  
Joshua N Powell ◽  
Florence J Breslin ◽  
Rebecca J Lepping ◽  
Laura E Martin ◽  
...  

Obesity is fundamentally a disorder of energy balance. In obese individuals, more energy is consumed than is expended, leading to excessive weight gain through the accumulation of adipose tissue. Complications arising from obesity, including cardiovascular disease, elevated peripheral inflammation, and the development of Type II diabetes, make obesity one of the leading preventable causes of morbidity and mortality. Thus, it is of paramount importance to both individual and public health that we understand the neural circuitry underlying the behavioral regulation of energy balance. To this end, we sought to examine obesity-related differences in the resting state functional connectivity of the dorsal mid-insula, a region of gustatory and interoceptive cortex associated with homeostatically sensitive responses to food stimuli. Within the present study, obese and healthy weight individuals completed resting fMRI scans during varying interoceptive states, both while fasting and after a standardized meal. We examined group differences in the pre- versus post-meal functional connectivity of the mid-insula, and how those differences were related to differences in self-reported hunger ratings and ratings of meal pleasantness. Obese and healthy weight individuals exhibited opposing patterns of eating-related functional connectivity between the dorsal mid-insula and multiple brain regions involved in reward, valuation, and satiety, including the medial orbitofrontal cortex, the dorsal striatum, and the ventral striatum. In particular, healthy weight participants exhibited a significant positive relationship between changes in hunger and changes in medial orbitofrontal functional connectivity, while obese participants exhibited a complementary negative relationship between hunger and ventral striatum connectivity to the mid-insula. These obesity-related alterations in dorsal mid-insula functional connectivity patterns may signify a fundamental difference in the experience of food motivation in obese individuals, wherein approach behavior toward food is guided more by reward-seeking than by homeostatically relevant interoceptive information from the body.


2013 ◽  
Vol 110 (8) ◽  
pp. 1811-1821 ◽  
Author(s):  
Dobromir Rahnev ◽  
Peter Kok ◽  
Moniek Munneke ◽  
Linda Bahdo ◽  
Floris P. de Lange ◽  
...  

Continuous theta burst stimulation (cTBS) is a technique that allows for altering of brain activity. Research to date has focused on the effect of cTBS on the target area, but less is known about its effects on the resting state functional connectivity between different brain regions. We investigated this issue by applying cTBS to the occipital cortex and probing its influence in retinotopically defined regions in early visual cortex using functional MRI. We found that occipital cTBS reliably decreased the resting state functional connectivity (i.e., the correlation of spontaneous activity) between regions of the early visual cortex. In the context of a perceptual task, such an effect could mean that cTBS affects the strength of the perceptual signal, its variability, or both. We investigated this issue in a second experiment in which subjects performed a perceptual discrimination task and indicated their level of certainty on each trial. The results showed that occipital cTBS decreased both subjects' accuracy and confidence. Signal detection modeling suggested that these impairments resulted primarily from a decreased strength of the perceptual signal, with a nonsignificant trend of a decrease in signal variability. We discuss the implications of these experiments for understanding the mechanisms by which cTBS influences brain activity and perceptual processes.


2021 ◽  
Author(s):  
Oscar Portoles ◽  
Yuzhen Qin ◽  
Jonathan Hadida ◽  
Mark Woolrich ◽  
Ming Cao ◽  
...  

AbstractBiophysical models of large-scale brain activity are a fundamental tool for understanding the mechanisms underlying the patterns observed with neuroimaging. These models combine a macroscopic description of the within- and between-ensemble dynamics of neurons within a single architecture. A challenge for these models is accounting for modulations of within-ensemble synchrony over time. Such modulations in local synchrony are fundamental for modeling behavioral tasks and resting-state activity. Another challenge comes from the difficulty in parametrizing large scale brain models which hinders researching principles related with between-ensembles differences. Here we derive a parsimonious large scale brain model that can describe fluctuations of local synchrony. Crucially, we do not reduce within-ensemble dynamics to macroscopic variables first, instead we consider within and between-ensemble interactions similarly while preserving their physiological differences. The dynamics of within-ensemble synchrony can be tuned with a parameter which manipulates local connectivity strength. We simulated resting-state static and time-resolved functional connectivity of alpha band envelopes in models with identical and dissimilar local connectivities. We show that functional connectivity emerges when there are high fluctuations of local and global synchrony simultaneously (i.e. metastable dynamics). We also show that for most ensembles, leaning towards local asynchrony or synchrony correlates with the functional connectivity with other ensembles, with the exception of some regions belonging to the default-mode network.Author summaryHere we present and evaluate a parsimonious model of large-scale brain activity. The model represents the brain as a network-of-networks structure. The sub-networks describe the neural activity within a brain region, and the global network encodes interactions between brain regions. Unlike other models, it capture progressive changes of local synchrony and local dynamics can be tuned with one parameter. Therefore the model could be used not only to model resting-state, but also behavioural tasks. Furthermore, we describe a simple framework that can deal with the arduous task of identifying global and local parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria J. S. Guerreiro ◽  
Madita Linke ◽  
Sunitha Lingareddy ◽  
Ramesh Kekunnaya ◽  
Brigitte Röder

AbstractLower resting-state functional connectivity (RSFC) between ‘visual’ and non-‘visual’ neural circuits has been reported as a hallmark of congenital blindness. In sighted individuals, RSFC between visual and non-visual brain regions has been shown to increase during rest with eyes closed relative to rest with eyes open. To determine the role of visual experience on the modulation of RSFC by resting state condition—as well as to evaluate the effect of resting state condition on group differences in RSFC—, we compared RSFC between visual and somatosensory/auditory regions in congenitally blind individuals (n = 9) and sighted participants (n = 9) during eyes open and eyes closed conditions. In the sighted group, we replicated the increase of RSFC between visual and non-visual areas during rest with eyes closed relative to rest with eyes open. This was not the case in the congenitally blind group, resulting in a lower RSFC between ‘visual’ and non-‘visual’ circuits relative to sighted controls only in the eyes closed condition. These results indicate that visual experience is necessary for the modulation of RSFC by resting state condition and highlight the importance of considering whether sighted controls should be tested with eyes open or closed in studies of functional brain reorganization as a consequence of blindness.


2019 ◽  
Author(s):  
Magdalena Fafrowicz ◽  
Bartosz Bohaterewicz ◽  
Anna Ceglarek ◽  
Monika Cichocka ◽  
Koryna Lewandowska ◽  
...  

Human performance, alertness, and most biological functions express rhythmic fluctuations across a 24-hour-period. This phenomenon is believed to originate from differences in both circadian and homeostatic sleep-wake regulatory processes. Interactions between these processes result in time-of-day modulations of behavioral performance as well as brain activity patterns. Although the basic mechanism of the 24-hour clock is conserved across evolution, there are interindividual differences in the timing of sleep-wake cycles, subjective alertness and functioning throughout the day. The study of circadian typology differences has increased during the last few years, especially research on extreme chronotypes, which provide a unique way to investigate the effects of sleep-wake regulation on cerebral mechanisms. Using functional magnetic resonance imaging (fMRI), we assessed the influence of chronotype and time-of-day on resting-state functional connectivity. 29 extreme morning- and 34 evening-type participants underwent two fMRI sessions: about one hour after wake-up time (morning) and about ten hours after wake-up time (evening), scheduled according to their declared habitual sleep-wake pattern on a regular working day. Analysis of obtained neuroimaging data disclosed only an effect of time of day on resting-state functional connectivity; there were different patterns of functional connectivity between morning and evening sessions. The results of our study showed no differences between extreme morning-type and evening-type individuals. We demonstrate that circadian and homeostatic influences on the resting-state functional connectivity have a universal character, unaffected by circadian typology.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Stephen J. Kohut ◽  
Dionyssios Mintzopoulos ◽  
Brian D. Kangas ◽  
Hannah Shields ◽  
Kelly Brown ◽  
...  

AbstractLong-term cocaine use is associated with a variety of neural and behavioral deficits that impact daily function. This study was conducted to examine the effects of chronic cocaine self-administration on resting-state functional connectivity of the dorsal anterior cingulate (dACC) and putamen—two brain regions involved in cognitive function and motoric behavior—identified in a whole brain analysis. Six adult male squirrel monkeys self-administered cocaine (0.32 mg/kg/inj) over 140 sessions. Six additional monkeys that had not received any drug treatment for ~1.5 years served as drug-free controls. Resting-state fMRI imaging sessions at 9.4 Tesla were conducted under isoflurane anesthesia. Functional connectivity maps were derived using seed regions placed in the left dACC or putamen. Results show that cocaine maintained robust self-administration with an average total intake of 367 mg/kg (range: 299–424 mg/kg). In the cocaine group, functional connectivity between the dACC seed and regions primarily involved in motoric behavior was weaker, whereas connectivity between the dACC seed and areas implicated in reward and cognitive processing was stronger. In the putamen seed, weaker widespread connectivity was found between the putamen and other motor regions as well as with prefrontal areas that regulate higher-order executive function; stronger connectivity was found with reward-related regions. dACC connectivity was associated with total cocaine intake. These data indicate that functional connectivity between regions involved in motor, reward, and cognitive processing differed between subjects with recent histories of cocaine self-administration and controls; in dACC, connectivity appears to be related to cumulative cocaine dosage during chronic exposure.


Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


2017 ◽  
Vol 114 (50) ◽  
pp. 13278-13283 ◽  
Author(s):  
Jarod L. Roland ◽  
Abraham Z. Snyder ◽  
Carl D. Hacker ◽  
Anish Mitra ◽  
Joshua S. Shimony ◽  
...  

Resting state functional connectivity is defined in terms of temporal correlations between physiologic signals, most commonly studied using functional magnetic resonance imaging. Major features of functional connectivity correspond to structural (axonal) connectivity. However, this relation is not one-to-one. Interhemispheric functional connectivity in relation to the corpus callosum presents a case in point. Specifically, several reports have documented nearly intact interhemispheric functional connectivity in individuals in whom the corpus callosum (the major commissure between the hemispheres) never develops. To investigate this question, we assessed functional connectivity before and after surgical section of the corpus callosum in 22 patients with medically refractory epilepsy. Section of the corpus callosum markedly reduced interhemispheric functional connectivity. This effect was more profound in multimodal associative areas in the frontal and parietal lobe than primary regions of sensorimotor and visual function. Moreover, no evidence of recovery was observed in a limited sample in which multiyear, longitudinal follow-up was obtained. Comparison of partial vs. complete callosotomy revealed several effects implying the existence of polysynaptic functional connectivity between remote brain regions. Thus, our results demonstrate that callosal as well as extracallosal anatomical connections play a role in the maintenance of interhemispheric functional connectivity.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yu-Chen Chen ◽  
Jian Zhang ◽  
Xiao-Wei Li ◽  
Wenqing Xia ◽  
Xu Feng ◽  
...  

Objective. Subjective tinnitus is hypothesized to arise from aberrant neural activity; however, its neural bases are poorly understood. To identify aberrant neural networks involved in chronic tinnitus, we compared the resting-state functional magnetic resonance imaging (fMRI) patterns of tinnitus patients and healthy controls.Materials and Methods. Resting-state fMRI measurements were obtained from a group of chronic tinnitus patients (n=29) with normal hearing and well-matched healthy controls (n=30). Regional homogeneity (ReHo) analysis and functional connectivity analysis were used to identify abnormal brain activity; these abnormalities were compared to tinnitus distress.Results. Relative to healthy controls, tinnitus patients had significant greater ReHo values in several brain regions including the bilateral anterior insula (AI), left inferior frontal gyrus, and right supramarginal gyrus. Furthermore, the left AI showed enhanced functional connectivity with the left middle frontal gyrus (MFG), while the right AI had enhanced functional connectivity with the right MFG; these measures were positively correlated with Tinnitus Handicap Questionnaires (r=0.459,P=0.012andr=0.479,P=0.009, resp.).Conclusions. Chronic tinnitus patients showed abnormal intra- and interregional synchronization in several resting-state cerebral networks; these abnormalities were correlated with clinical tinnitus distress. These results suggest that tinnitus distress is exacerbated by attention networks that focus on internally generated phantom sounds.


Sign in / Sign up

Export Citation Format

Share Document