scholarly journals Blood-brain barrier transport using a high-affinity, brain-selective VNAR (Variable Domain of New Antigen Receptor) antibody targeting transferrin receptor 1

2019 ◽  
Author(s):  
Pawel Stocki ◽  
Jaroslaw Szary ◽  
Charlotte LM Rasmussen ◽  
Mykhaylo Demydchuk ◽  
Leandra Northall ◽  
...  

ABSTRACTTransfer across the blood-brain barrier (BBB) remains a significant hurdle for the development of biopharmaceuticals with therapeutic effects within the central nervous system. We established a functional selection method to identify high-affinity single domain antibodies to the transferrin receptor 1 (TfR1) with efficient biotherapeutic delivery across the BBB.MethodsA synthetic phage display library based on the variable domain of new antigen receptor (VNAR) was used for in vitro selection against recombinant human TfR1 ectodomain (rh-TfR1-ECD) followed by in vivo selection in mouse for brain parenchyma penetrating antibodies. Phage formatted VNARs cross-reactive to recombinant human and mouse TfR1-ECD were fused to Fc domain of human IgG1 (hFc) and tested for TfR1-ECD binding by ELISA and surface plasmon resonance. The pharmacokinetics and biodistribution of VNAR-hFcs were studied in mice by ELISA and immunolabeling following intravenous (IV) injection and cardiac perfusion. Functional activity was measured by body temperature reduction following the IV injection of neurotensin fused to a TXB2-hFc (TXB2-hFc-NT).ResultsTXB2 was identified as a high-affinity, species cross-reactive VNAR antibody against TfR1-ECD, that does not to compete with transferrin or ferritin for receptor binding. IV dosing of TXB2-hFc at 25 nmol/kg (1.875 mg/kg) in mice resulted in rapid binding to brain capillaries with subsequent transport into the brain parenchyma and specific uptake into TfR1-positive neurons. Likewise, IV dosing of TXB2-hFc-NT at 25 nmol/kg resulted in a rapid and reversible pharmacological response as measured by body temperature reduction. TXB2-hFc did not elicit any acute adverse reactions, bind or deplete circulating reticulocytes or reduce BBB-expressed endogenous TfR1 in mice. There was no evidence of target-mediated clearance or accumulation in peripheral organs except lung.ConclusionsA species cross-reactive and brain-selective VNAR antibody to TfR1 was identified by a combination of in vitro and in vivo phage selection. As a high-affinity, bivalent Fc fusion protein, TXB2 rapidly crossed the BBB and exhibited a favorable pharmacokinetic and safety profile and can be readily adapted to carry a wide variety of biotherapeutics from blood to brain.

2020 ◽  
Author(s):  
Pawel Stocki ◽  
Jaroslaw Szary ◽  
Charlotte L. M. Rasmussen ◽  
Mykhaylo Demydchuk ◽  
Leandra Northall ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1856
Author(s):  
Guillaume Becker ◽  
Sylvia Da Silva ◽  
Amelia-Naomi Sabo ◽  
Maria Cristina Antal ◽  
Véronique Kemmel ◽  
...  

Serotonin affects many functions in the body, both in the central nervous system (CNS) and the periphery. However, its effect on the blood–brain barrier (BBB) in separating these two worlds has been scarcely investigated. The aim of this work was to characterize the serotonin receptor 5-HT4 in the hCMEC/D3 cell line, in the rat and the human BBB. We also examined the effect of prucalopride, a 5-HT4 receptor agonist, on the permeability of the hCMEC/D3 in an in vitro model of BBB. We then confirmed our observations by in vivo experiments. In this work, we show that the 5-HT4 receptor is expressed by hCMEC/D3 cells and in the capillaries of rat and human brains. Prucalopride increases the BBB permeability by downregulating the expression of the tight junction protein, occludin. This effect is prevented by GR113808, a 5-HT4 receptor antagonist, and is mediated by the Src/ERK1/2 signaling pathway. The canonical G-protein-dependent pathway does not appear to be involved in this phenomenon. Finally, the administration of prucalopride increases the diffusion of Evans blue in the rat brain parenchyma, which is synonymous with BBB permeabilization. All these data indicate that the 5-HT4 receptor contributes to the regulation of BBB permeability.


2019 ◽  
Vol 21 (Supplement_4) ◽  
pp. iv3-iv3
Author(s):  
Julie Wang ◽  
Houmam Kafa ◽  
Noelia Rubio ◽  
Sukhvinder Bansal ◽  
Frederic Festy ◽  
...  

Abstract Despite extensive research in drug development, brain cancer is still lacking an efficacious cure due to the inability to deliver current therapeutics to the brain across the blood-brain barrier (BBB). Chemically functionalized carbon nanotubes (f-CNT) constitute a novel class of nanomaterials with attractive physical, chemical and electronic properties. The key advantage of f-CNTs is the extremely high surface area to size ratio allowing a high degree of chemical functionalization making them invaluable tools for designing drug delivery systems to the brain. One of the most interesting characteristics of f-CNTs is their ability to translocate across plasma membranes and enter the cells either passively by direct translocation across membranes or actively via endocytosis. Herein, we confirmed the ability of f-CNTs to cross the BBB and reach the brain in in vitro using a co-culture model of PBEC and primary rat astrocytes and in vivo after intravenous injection. Thanks to their unique optical properties, the uptake of f-CNT in brain was confirmed using state-of-the-art spectroscopic imaging techniques such as multi-photon luminescence imaging, fluorescence lifetime microscopy and Raman spectroscopy. Conjugation with angiopep-2 (ANG), a small peptide targeting the LRP1 receptor overexpressed in the BBB and glioma cells, further enhanced brain parenchyma accumulation in healthy brains. Higher uptake in glioma than brain parenchyma was also observed in glioma-bearing mice after intravenous administration. The inherent brain accumulation ability of f-CNTs coupled with improved brain-targeting by ANG favours the future clinical applications of f-CNTs-ANG to deliver active therapeutics for brain glioma therapy.


2021 ◽  
Author(s):  
Geoffrey Potjewyd ◽  
Katherine Kellett ◽  
Nigel M Hooper

The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer’s disease. The ability to differentiate induced pluripotent stem cells (iPSCs) to the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs, or to design cell-based therapies.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


2005 ◽  
Vol 289 (5) ◽  
pp. H2012-H2019 ◽  
Author(s):  
Melissa A. Fleegal ◽  
Sharon Hom ◽  
Lindsay K. Borg ◽  
Thomas P. Davis

The blood-brain barrier (BBB) is a metabolic and physiological barrier important for maintaining brain homeostasis. The aim of this study was to determine the role of PKC activation in BBB paracellular permeability changes induced by hypoxia and posthypoxic reoxygenation using in vitro and in vivo BBB models. In rat brain microvessel endothelial cells (RMECs) exposed to hypoxia (1% O2-99% N2; 24 h), a significant increase in total PKC activity was observed, and this was reduced by posthypoxic reoxygenation (95% room air-5% CO2) for 2 h. The expression of PKC-βII, PKC-γ, PKC-η, PKC-μ, and PKC-λ also increased following hypoxia (1% O2-99% N2; 24 h), and these protein levels remained elevated following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Increases in the expression of PKC-ε and PKC-ζ were also observed following posthypoxic reoxygenation (95% room air-5% CO2; 2 h). Moreover, inhibition of PKC with chelerythrine chloride (10 μM) attenuated the hypoxia-induced increases in [14C]sucrose permeability. Similar to what was observed in RMECs, total PKC activity was also stimulated in cerebral microvessels isolated from rats exposed to hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min). In contrast, hypoxia (6% O2-94% N2; 1 h) and posthypoxic reoxygenation (room air; 10 min) significantly increased the expression levels of only PKC-γ and PKC-θ in the in vivo hypoxia model. These data demonstrate that hypoxia-induced BBB paracellular permeability changes occur via a PKC-dependent mechanism, possibly by differentially regulating the protein expression of the 11 PKC isozymes.


2016 ◽  
Vol 36 (5) ◽  
pp. 862-890 ◽  
Author(s):  
Hans C Helms ◽  
N Joan Abbott ◽  
Malgorzata Burek ◽  
Romeo Cecchelli ◽  
Pierre-Olivier Couraud ◽  
...  

The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.


2003 ◽  
Vol 31 (3) ◽  
pp. 273-276 ◽  
Author(s):  
Hanna Tähti ◽  
Heidi Nevala ◽  
Tarja Toimela

The purpose of this paper is to review the current state of development of advanced in vitro blood–brain barrier (BBB) models. The BBB is a special capillary bed that separates the blood from the central nervous system (CNS) parenchyma. Astrocytes maintain the integrity of the BBB, and, without astrocytic contacts, isolated brain capillary endothelial cells in culture lose their barrier characteristics. Therefore, when developing in vitro BBB models, it is important to add astrocytic factors into the culture system. Recently, novel filter techniques and co-culture methods have made it possible to develop models which resemble the in vivo functions of the BBB in an effective way. With a BBB model, kinetic factors can be added into the in vitro batteries used for evaluating the neurotoxic potential of chemicals. The in vitro BBB model also represents a useful tool for the in vitro prediction of the BBB permeability of drugs, and offers the possibility to scan a large number of drugs for their potential to enter the CNS. Cultured monolayers of brain endothelial cell lines or selected epithelial cell lines, combined with astrocyte and neuron cultures, form a novel three-dimensional technique for the screening of neurotoxic compounds.


Sign in / Sign up

Export Citation Format

Share Document