scholarly journals Atomic structures determined from digitally defined nanocrystalline regions

2019 ◽  
Author(s):  
Marcus Gallagher-Jones ◽  
Karen C. Bustillo ◽  
Colin Ophus ◽  
Logan S. Richards ◽  
Jim Ciston ◽  
...  

AbstractNanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, approaches in scanning nanobeam electron diffraction extend the reach of nanocrystallography and mitigate the need for diffraction from large portions of one or more crystals. We now apply scanning nanobeam electron diffraction to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, we record thousands of sparse diffraction patterns over multiple crystal orientations. We assign each pattern to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. From this diffraction tomogram, we can digitally extract intensities from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. Merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab-initio solutions that can be refined to atomic resolution, analogous to structures determined by selected area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography.

IUCrJ ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 490-499
Author(s):  
Marcus Gallagher-Jones ◽  
Karen C. Bustillo ◽  
Colin Ophus ◽  
Logan S. Richards ◽  
Jim Ciston ◽  
...  

Nanocrystallography has transformed our ability to interrogate the atomic structures of proteins, peptides, organic molecules and materials. By probing atomic level details in ordered sub-10 nm regions of nanocrystals, scanning nanobeam electron diffraction extends the reach of nanocrystallography and in principle obviates the need for diffraction from large portions of one or more crystals. Scanning nanobeam electron diffraction is now applied to determine atomic structures from digitally defined regions of beam-sensitive peptide nanocrystals. Using a direct electron detector, thousands of sparse diffraction patterns over multiple orientations of a given crystal are recorded. Each pattern is assigned to a specific location on a single nanocrystal with axial, lateral and angular coordinates. This approach yields a collection of patterns that represent a tilt series across an angular wedge of reciprocal space: a scanning nanobeam diffraction tomogram. Using this diffraction tomogram, intensities can be digitally extracted from any desired region of a scan in real or diffraction space, exclusive of all other scanned points. Intensities from multiple regions of a crystal or from multiple crystals can be merged to increase data completeness and mitigate missing wedges. It is demonstrated that merged intensities from digitally defined regions of two crystals of a segment from the OsPYL/RCAR5 protein produce fragment-based ab initio solutions that can be refined to atomic resolution, analogous to structures determined by selected-area electron diffraction. In allowing atomic structures to now be determined from digitally outlined regions of a nanocrystal, scanning nanobeam diffraction tomography breaks new ground in nanocrystallography.


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 206 ◽  
Author(s):  
James Hower ◽  
Dali Qian ◽  
Nicolas Briot ◽  
Eduardo Santillan-Jimenez ◽  
Madison Hood ◽  
...  

Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even true atomic dispersion within the fly ash glass.


The selected area electron diffraction patterns from a crystal containing a stacking fault have been observed to exhibit a number of unusual features. In some cases a periodic intensity distribution about the Bragg spot, in other cases streaking. By applying Kirchhoff’s theory of diffraction and using the dynamical theory of electron diffraction this intensity distribution around the Bragg spots in the electron diffraction patterns from stacking faults has been calculated. The calculated intensity distributions compare favourably with experiment. A similar calculation has also been carried out to predict the intensity distribution around Bragg spots in the selected area electron diffraction patterns from a crystal containing a grain boundary.


2013 ◽  
Vol 203-204 ◽  
pp. 262-265
Author(s):  
Maciej Zubko ◽  
Joanna Wspaniała ◽  
Danuta Stróż ◽  
Enrico Mugnaioli

Crystal structure of two spinel single crystals CdCr2Se4 and ZnCr2-xVxSe4 have been reinvestigated using automated electron diffraction tomography method with beam precession. 3D reciprocal space have been reconstructed base on recorded tilt series. For both samples crystal structure was refined and the cubic symmetry with space group Fd-3m was confirmed. No additional electron potential has been located beside occupied atom sites.


The arrangement of the long axis of the long-chain organic molecules is revealed by electron diffraction patterns of inclined specimens. The side spacings are estimated from a composite pattern of kaolin which has a known ‘standard’ structure and lattice constants. A 3 cm. vacuum valve was designed to isolate the apparatus from the oil-diffusion pumps.


2010 ◽  
Vol 18 (4) ◽  
pp. 22-28
Author(s):  
William F. Tivol

One of the capabilities of electron microscopes is to obtain diffraction patterns, which can be analyzed to give information about the structure of the specimen. This brief review discusses some of the technical considerations in using electron diffraction patterns for structural analysis. The technique of selected-area electron diffraction uses diffraction obtained from a limited region of the specimen.


Sign in / Sign up

Export Citation Format

Share Document