scholarly journals Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements

2019 ◽  
Author(s):  
Rory Henderson ◽  
Maolin Lu ◽  
Ye Zhou ◽  
Zekun Mu ◽  
Robert Parks ◽  
...  

AbstractThe trimeric HIV-1 Envelope protein (Env) mediates viral-host cell fusion via a network of conformational transitions, with allosteric elements in each protomer orchestrating host receptor-induced exposure of the co-receptor binding site and fusion elements. To understand the molecular details of this allostery, we introduced Env mutations aimed to prevent CD4-induced rearrangements in the HIV-1 BG505 Env trimer. Binding analysis performed on the soluble ectodomain BG505 SOSIP Env trimers, cell-surface expressed BG505 full-length trimers and single-molecule Förster Resonance Energy Transfer (smFRET) performed on the full-length virion-bound Env confirmed that these mutations prevented CD4-induced transitions of the HIV-1 Env. Structural analysis by single-particle cryo-electron microscopy performed on the BG505 SOSIP mutant Env proteins revealed rearrangements in the gp120 topological layer contacts with gp41. Specifically, a conserved tryptophan at position 571 (W571) was displaced from its typical pocket at the interface of gp120 topological layers 1 and 2 by lysine 567, disrupting key gp120-gp41 contacts and rendering the Env insensitive to CD4 binding. Vector based analysis of closed Env SOSIP structures revealed the newly designed trimers exhibited a quaternary structure distinct from that typical of SOSIPs and residing near a cluster of Env trimers bound to vaccine-induced fusion peptide-directed antibodies (vFP Mabs). These results reveal the critical function of W571 as a conformational switch in Env allostery and receptor-mediated viral entry and provide insights on Env conformation that are relevant for vaccine design.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Irene Carlon-Andres ◽  
Tomas Malinauskas ◽  
Sergi Padilla-Parra

AbstractThe HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged with live T cells remains unknown. We used two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer occurring between fluorescent labels on HIV-1 Env on native virions. Our observations reveal Env dynamics at two levels: transitions between different intramolecular conformations and intermolecular interactions between Env within the viral membrane. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes restrict Env intramolecular dynamics and interactions between adjacent Env molecules when engaged with living T cells. Importantly, our results show that Env-Env interactions depend on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or by neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and distribution of Env molecules mediate HIV-1 Env–T cell interactions in real time and therefore might control immune evasion.


2020 ◽  
Author(s):  
Irene Carlon-Andres ◽  
Tomas Malinauskas ◽  
Sergi Padilla-Parra

AbstractThe HIV-1 envelope glycoprotein (Env) mediates viral entry into the host cell. Although the highly dynamic nature of Env intramolecular conformations has been shown with single molecule spectroscopy in vitro, the bona fide Env intra- and intermolecular mechanics when engaged in live T cells remains unknown. We used both, two photon fast fluorescence lifetime imaging detection of single-molecule Förster Resonance Energy Transfer and single molecule photobleaching to reveal transitions between intramolecular and intermolecular conformations that mediate Env clustering. Furthermore, we show that three broad neutralizing anti-Env antibodies directed to different epitopes destabilise Env intramolecular dynamics and their clusters when engaged to living T cells. Importantly, our results show that Env clustering is a common conformation across different HIV-1 Env strains, which depends on efficient virus maturation, and that is disrupted upon binding of Env to CD4 or to neutralizing antibodies. Thus, this study illuminates how different intramolecular conformations and clusters of Env mediate HIV-1 Env–T cell interactions in real time and therefore might control immune evasion.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Xiaochu Ma ◽  
Maolin Lu ◽  
Jason Gorman ◽  
Daniel S Terry ◽  
Xinyu Hong ◽  
...  

HIV-1 entry into cells requires binding of the viral envelope glycoprotein (Env) to receptor CD4 and coreceptor. Imaging of individual Env molecules on native virions shows Env trimers to be dynamic, spontaneously transitioning between three distinct well-populated conformational states: a pre-triggered Env (State 1), a default intermediate (State 2) and a three-CD4-bound conformation (State 3), which can be stabilized by binding of CD4 and coreceptor-surrogate antibody 17b. Here, using single-molecule Fluorescence Resonance Energy Transfer (smFRET), we show the default intermediate configuration to be asymmetric, with individual protomers adopting distinct conformations. During entry, this asymmetric intermediate forms when a single CD4 molecule engages the trimer. The trimer can then transition to State 3 by binding additional CD4 molecules and coreceptor.


2019 ◽  
Vol 47 (5) ◽  
pp. 1247-1257 ◽  
Author(s):  
Mateusz Dyla ◽  
Sara Basse Hansen ◽  
Poul Nissen ◽  
Magnus Kjaergaard

Abstract P-type ATPases transport ions across biological membranes against concentration gradients and are essential for all cells. They use the energy from ATP hydrolysis to propel large intramolecular movements, which drive vectorial transport of ions. Tight coordination of the motions of the pump is required to couple the two spatially distant processes of ion binding and ATP hydrolysis. Here, we review our current understanding of the structural dynamics of P-type ATPases, focusing primarily on Ca2+ pumps. We integrate different types of information that report on structural dynamics, primarily time-resolved fluorescence experiments including single-molecule Förster resonance energy transfer and molecular dynamics simulations, and interpret them in the framework provided by the numerous crystal structures of sarco/endoplasmic reticulum Ca2+-ATPase. We discuss the challenges in characterizing the dynamics of membrane pumps, and the likely impact of new technologies on the field.


2018 ◽  
Author(s):  
Alexander Carl DeHaven

This thesis contains four topic areas: a review of single-molecule microscropy methods and splicing, conformational dynamics of stem II of the U2 snRNA, the impact of post-transcriptional modifications on U2 snRNA folding dynamics, and preliminary findings on Mango aptamer folding dynamics.


Author(s):  
Hsin-Chih Yeh ◽  
Christopher M. Puleo ◽  
Yi-Ping Ho ◽  
Tza-Huei Wang

In this report, we review several single-molecule detection (SMD) methods and newly developed nanocrystal-mediated single-fluorophore strategies for ultrasensitive and specific analysis of genomic sequences. These include techniques, such as quantum dot (QD)-mediated fluorescence resonance energy transfer (FRET) technology and dual-color fluorescence coincidence and colocalization analysis, which allow separation-free detection of low-abundance DNA sequences and mutational analysis of oncogenes. Microfluidic approaches developed for use with single-molecule detection to achieve rapid, low-volume, and quantitative analysis of nucleic acids, such as electrokinetic manipulation of single molecules and confinement of sub-nanoliter samples using microfluidic networks integrated with valves, are also discussed.


Sign in / Sign up

Export Citation Format

Share Document