scholarly journals Xenopus Cdc7 function is dependent on licensing but not on XORC, XCdc6, or CDK activity and is required for XCdc45 loading

2000 ◽  
Vol 14 (12) ◽  
pp. 1528-1540
Author(s):  
Pedro Jares ◽  
J. Julian Blow

The assembly and disassembly of protein complexes at replication origins play a crucial role in the regulation of chromosomal DNA replication. The sequential binding of the origin recognition complex (ORC), Cdc6, and the minichromosome maintenance (MCM/P1) proteins produces a licensed replication origin. Before the initiation of replication can occur, each licensed origin must be acted upon by S phase-inducing CDKs and the Cdc7 protein kinase. In the present report we describe the role of Xenopus Cdc7 (XCdc7) in DNA replication using cell-free extracts of Xenopus eggs. We show that XCdc7 binds to chromatin during G1 and S phase. XCdc7 associates with chromatin only once origins have been licensed, but this association does not require the continued presence of XORC or XCdc6 once they have fulfilled their essential role in licensing. Moreover, XCdc7 is required for the subsequent CDK-dependent loading of XCdc45 but is not required for the destabilization of origins that occurs once licensing is complete. Finally, we show that CDK activity is not necessary for XCdc7 to associate with chromatin, induce MCM/P1 phosphorylation, or perform its essential replicative function. From these results we suggest a simple model for the assembly of functional initiation complexes in the Xenopus system.

2006 ◽  
Vol 26 (3) ◽  
pp. 1098-1108 ◽  
Author(s):  
Masayoshi Iizuka ◽  
Tomoko Matsui ◽  
Haruhiko Takisawa ◽  
M. Mitchell Smith

ABSTRACT The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.


2002 ◽  
Vol 115 (7) ◽  
pp. 1435-1440 ◽  
Author(s):  
Mickael Rialland ◽  
Francesco Sola ◽  
Corrado Santocanale

Formation of pre-replicative complexes at origins is an early cell cycle event essential for DNA duplication. A large body of evidence supports the notion that Cdc6 protein, through its interaction with the origin recognition complex, is required for pre-replicative complex assembly by loading minichromosome maintenance proteins onto DNA. In fission yeast and Xenopus, this reaction known as the licensing of chromatin for DNA replication also requires the newly identified Cdt1 protein. We studied the role of hCdt1 protein in the duplication of the human genome by antibody microinjection experiments and analyzed its expression during the cell cycle in human non-transformed cells. We show that hCdt1 is essential for DNA replication in intact human cells, that it executes its function in a window of the cell cycle overlapping with pre-replicative complex formation and that it is necessary for the loading of minichromosome maintenance proteins onto chromatin. Intriguingly, we observed that hCdt1 protein, in contrast to other licensing factors, is already present in serum-deprived G0 arrested cells and its levels increase only marginally upon re-entry in the cell cycle.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2687-2687
Author(s):  
Hengyou Weng ◽  
Huilin Huang ◽  
Xi Qin ◽  
He Huang ◽  
Okwang Kwon ◽  
...  

Abstract DNA cytosine methylation is one of the best-characterized epigenetic modifications that play important roles in diverse cellular and pathological processes. The mechanism underlying the dynamic regulation of the level and distribution of 5-methylcytosine (5mC) as well as the biological consequence of DNA methylation deregulation have been interesting research topics in recent years. TET1, first identified as a fusion partner of the histone H3 Lys4 (H3K4) methyltransferase MLL (mixed-lineage leukemia) in acute myeloid leukemia (AML), is the founding member of the Ten-Eleven-Translocation (TET) family of DNA hydroxylases which are capable of converting 5mC to 5hmC (5-hydroxymethylcytosine) and lead to gene activation. Our group has previously demonstrated that TET1 plays an oncogenic role in MLL-rearranged leukemia (Huang H, et al. PNAS 2013; 110(29):11994-9). The expression of the TET1 protein and the global level of its enzymatic product, 5hmC, are significantly up-regulated in MLL-rearranged leukemia, whereas the opposite has been reported in other cancers where TET1 functions as a tumor suppressor. Therefore, a global understanding of the targets of TET1 in MLL-rearranged leukemia would greatly help to understand the role of TET1 in this specific type of AML. To this end, we performed proteomics study in parallel with RNA-seq to systematically explore the functional targets of TET1 in a genome-wide and unbiased way. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic profiling showed that when Tet1 was knocked down in MLL-ENL-estrogen receptor inducible (ERtm) mouse myeloid leukemia cells, a total of 123 proteins were down-regulated whereas 191 were up-regulated with a fold-change cutoff of 1.2 (Fig. 1A and B), representing positively and negatively regulated targets of TET1, respectively. Most of the proteins with altered expression upon Tet1 knock-down showed a corresponding change at the mRNA level as reflected by the RNA-seq data. Interestingly, gene ontology (GO) analysis indicated enrichment on genes associated with DNA replication and cell cycle progression. Among these genes, the minichromosome maintenance complex genes, including MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7, showed significant downregulation when Tet1 expression was depleted. We further conducted chromatin immunoprecipitation (ChIP) assays and demonstrated that TET1 binds directly to the CpG islands in the promoters of these MCM genes, suggesting that the regulation of the MCM genes by TET1 may occur at the transcriptional level. The six main minichromosome maintenance proteins (MCM2-7) are recruited to DNA replication origins in early G1 phase of the cell cycle and constitute the core of the replicative DNA helicase. We showed that not only the total levels of the MCM2-7 proteins, but also their binding to chromatin (Fig. 1C), were decreased by shRNAs against TET1 in human leukemia cell lines. Examination on cell cycle distribution revealed a significant decrease in the S phase population upon TET1 knockdown (Fig. 1D), which could be phenocopied by silencing of individual MCM genes. Consistently, incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into newly synthesized DNA in the S phase can be inhibited by TET1 shRNAs (Fig. 1E), indicating the inhibition on DNA replication by TET1 silencing. Furthermore, DNA combing assays suggest that TET1 knockdown inhibits new origin firing (Fig. 1F) but does not influence replication fork speed. Collectively, our findings reveal a novel role of TET1 on regulating DNA replication in MLL-rearranged leukemia through targeting of MCM genes and highlight the therapeutic implication of targeting the TET1/MCM signaling. Figure 1 Role of TET1 in regulate DNA replication by controlling expression of MCM genes Figure 1. Role of TET1 in regulate DNA replication by controlling expression of MCM genes Disclosures No relevant conflicts of interest to declare.


2004 ◽  
Vol 165 (6) ◽  
pp. 789-800 ◽  
Author(s):  
Susanna Ekholm-Reed ◽  
Juan Méndez ◽  
Donato Tedesco ◽  
Anders Zetterberg ◽  
Bruce Stillman ◽  
...  

Deregulation of cyclin E expression has been associated with a broad spectrum of human malignancies. Analysis of DNA replication in cells constitutively expressing cyclin E at levels similar to those observed in a subset of tumor-derived cell lines indicates that initiation of replication and possibly fork movement are severely impaired. Such cells show a specific defect in loading of initiator proteins Mcm4, Mcm7, and to a lesser degree, Mcm2 onto chromatin during telophase and early G1 when Mcm2–7 are normally recruited to license origins of replication. Because minichromosome maintenance complex proteins are thought to function as a heterohexamer, loading of Mcm2-, Mcm4-, and Mcm7-depleted complexes is likely to underlie the S phase defects observed in cyclin E–deregulated cells, consistent with a role for minichromosome maintenance complex proteins in initiation of replication and fork movement. Cyclin E–mediated impairment of DNA replication provides a potential mechanism for chromosome instability observed as a consequence of cyclin E deregulation.


2012 ◽  
Vol 196 (2) ◽  
pp. 233-246 ◽  
Author(s):  
Remi Sonneville ◽  
Matthieu Querenet ◽  
Ashley Craig ◽  
Anton Gartner ◽  
J. Julian Blow

Accurate DNA replication requires proper regulation of replication licensing, which entails loading MCM-2–7 onto replication origins. In this paper, we provide the first comprehensive view of replication licensing in vivo, using video microscopy of Caenorhabditis elegans embryos. As expected, MCM-2–7 loading in late M phase depended on the prereplicative complex (pre-RC) proteins: origin recognition complex (ORC), CDC-6, and CDT-1. However, many features we observed have not been described before: GFP–ORC-1 bound chromatin independently of ORC-2–5, and CDC-6 bound chromatin independently of ORC, whereas CDT-1 and MCM-2–7 DNA binding was interdependent. MCM-3 chromatin loading was irreversible, but CDC-6 and ORC turned over rapidly, consistent with ORC/CDC-6 loading multiple MCM-2–7 complexes. MCM-2–7 chromatin loading further reduced ORC and CDC-6 DNA binding. This dynamic behavior creates a feedback loop allowing ORC/CDC-6 to repeatedly load MCM-2–7 and distribute licensed origins along chromosomal DNA. During S phase, ORC and CDC-6 were excluded from nuclei, and DNA was overreplicated in export-defective cells. Thus, nucleocytoplasmic compartmentalization of licensing factors ensures that DNA replication occurs only once.


1993 ◽  
Vol 106 (3) ◽  
pp. 983-994 ◽  
Author(s):  
F. Fang ◽  
J.W. Newport

RP-A is a single-stranded DNA-binding protein, which has been shown to be required for DNA replication using an SV40 model system. The protein has also been shown to be phosphorylated at the G1-S phase transition. Using Xenopus cell-free extracts we have investigated the role of RP-A in nuclear replication and characterized the kinases and conditions that lead to phosphorylation of RP-A during the cell cycle. By immunodepleting RP-A from Xenopus extracts we have shown that RP-A is essential for replication of chromosomal DNA. Our results show that, during S phase, only that RP-A which is associated with nuclei is phosphorylated. Furthermore our results indicate that during S phase RP-A is only phosphorylated when associated with single-stranded DNA. By immunodepleting cdk2 kinase we show that cdk2 kinase is required for the observed phosphorylation of RP-A in nuclei during S phase. However, using purified cdk2 kinase and RP-A we are unable to detect a direct phosphorylation of RP-A by cdk2 kinase. This observation suggests that phosphorylation of DNA-bound RP-A at S phase is carried out by a kinase distinct from cdk2. Consistent with this we find that when single-stranded DNA is added to S phase extracts depleted of cdk2 kinase, RP-A is phosphorylated. Together these results suggest that cdk2 kinase participates in the activation of DNA replication at a stage prior to the binding of RP-A to the initiation complex. In addition to RP-A phosphorylation in S phase, we have also found that at the onset of mitosis RP-A is quantitatively phosphorylated and that phosphorylation is directly mediated by cdc2 kinase. However, at this time during the cell cycle, cdc2-dependent phosphorylation of RP-A is independent of DNA binding. These observations further demonstrate the distinctions between cdk2 and cdc2 kinases.


2008 ◽  
Vol 413 (3) ◽  
pp. 535-543 ◽  
Author(s):  
Masaya Takehara ◽  
Masaki Makise ◽  
Hitomi Takenaka ◽  
Teita Asano ◽  
Tohru Mizushima

In eukaryotes, ORC (origin recognition complex), a six-protein complex, is the most likely initiator of chromosomal DNA replication. ORC belongs to the AAA+ (ATPases associated with a variety of cellular activities) family of proteins and has intrinsic ATPase activity derived from Orc1p, one of its subunits. To reveal the role of this ATPase activity in Saccharomyces cerevisiae (baker's yeast) ORC, we mutated the Orc1p sensor 1 and sensor 2 regions, which are important for ATPase activity in AAA+ proteins. Plasmid-shuffling analysis revealed that Asn600, Arg694 and Arg704 are essential for the function of Orc1p. In yeast cells, overexpression of Orc1R694Ep inhibited growth, caused inefficient loading of MCM (mini-chromosome maintenance complex of proteins) and slowed the progression of S phase. In vitro, purified ORC-1R [ORC with Orc1R694Ep (Orc1p Arg694→Glu mutant)] has decreased ATPase activity in the presence or absence of origin DNA. However, other activities (ATP binding and origin DNA binding) were indistinguishable from those of wild-type ORC. The present study showed that Arg694 of the Orc1p subunit is important for the ATPase activity of ORC and suggests that this ATPase activity is required for efficient MCM loading on to origin DNA and for progression of S phase.


2002 ◽  
Vol 13 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Karola Lindner ◽  
Juraj Gregán ◽  
Stuart Montgomery ◽  
Stephen E. Kearsey

A critical event in eukaryotic DNA replication involves association of minichromosome maintenance (MCM2–7) proteins with origins, to form prereplicative complexes (pre-RCs) that are competent for initiation. The ability of mutants defective in MCM2–7 function to complete meiosis had suggested that pre-RC components could be irrelevant to premeiotic S phase. We show here that MCM2–7 proteins bind to chromatin in fission yeast cells preparing for meiosis and during premeiotic S phase in a manner suggesting they in fact are required for DNA replication in the meiotic cycle. This is confirmed by analysis of a degron mcm4 mutant, which cannot carry out premeiotic DNA replication. Later in meiosis, Mcm4 chromatin association is blocked between meiotic nuclear divisions, presumably accounting for the absence of a second round of DNA replication. Together, these results emphasize similarity between replication mechanisms in mitotic and meiotic cell cycles.


2021 ◽  
Vol 49 (18) ◽  
pp. 10493-10506
Author(s):  
Liton Kumar Saha ◽  
Yasuhisa Murai ◽  
Sourav Saha ◽  
Ukhyun Jo ◽  
Masataka Tsuda ◽  
...  

Abstract The antitumor activity of poly(ADP-ribose) polymerase inhibitors (PARPis) has been ascribed to PARP trapping, which consists in tight DNA–protein complexes. Here we demonstrate that the cytotoxicity of talazoparib and olaparib results from DNA replication. To elucidate the repair of PARP1–DNA complexes associated with replication in human TK6 and chicken DT40 lymphoblastoid cells, we explored the role of Spartan (SPRTN), a metalloprotease associated with DNA replication, which removes proteins forming DPCs. We find that SPRTN-deficient cells are hypersensitive to talazoparib and olaparib, but not to veliparib, a weak PARP trapper. SPRTN-deficient cells exhibit delayed clearance of trapped PARP1 and increased replication fork stalling upon talazoparib and olaparib treatment. We also show that SPRTN interacts with PARP1 and forms nuclear foci that colocalize with the replicative cell division cycle 45 protein (CDC45) in response to talazoparib. Additionally, SPRTN is deubiquitinated and epistatic with translesion synthesis (TLS) in response to talazoparib. Our results demonstrate that SPRTN is recruited to trapped PARP1 in S-phase to assist in the excision and replication bypass of PARP1–DNA complexes.


2002 ◽  
Vol 159 (2) ◽  
pp. 225-236 ◽  
Author(s):  
Julie M. Claycomb ◽  
David M. MacAlpine ◽  
James G. Evans ◽  
Stephen P. Bell ◽  
Terry L. Orr-Weaver

Chorion gene amplification in the ovaries of Drosophila melanogaster is a powerful system for the study of metazoan DNA replication in vivo. Using a combination of high-resolution confocal and deconvolution microscopy and quantitative realtime PCR, we found that initiation and elongation occur during separate developmental stages, thus permitting analysis of these two phases of replication in vivo. Bromodeoxyuridine, origin recognition complex, and the elongation factors minichromosome maintenance proteins (MCM)2–7 and proliferating cell nuclear antigen were precisely localized, and the DNA copy number along the third chromosome chorion amplicon was quantified during multiple developmental stages. These studies revealed that initiation takes place during stages 10B and 11 of egg chamber development, whereas only elongation of existing replication forks occurs during egg chamber stages 12 and 13. The ability to distinguish initiation from elongation makes this an outstanding model to decipher the roles of various replication factors during metazoan DNA replication. We utilized this system to demonstrate that the pre–replication complex component, double-parked protein/cell division cycle 10–dependent transcript 1, is not only necessary for proper MCM2–7 localization, but, unexpectedly, is present during elongation.


Sign in / Sign up

Export Citation Format

Share Document