scholarly journals Mutation of a Drosophila gamma tubulin ring complex subunit encoded by discs degenerate-4 differentially disrupts centrosomal protein localization

2000 ◽  
Vol 14 (24) ◽  
pp. 3126-3139 ◽  
Author(s):  
V. Barbosa
2021 ◽  
Author(s):  
Debmalya Barh ◽  
Sandeep Tiwari ◽  
Lucas Gabriel Rodrigues Gomes ◽  
Marianna E. Weener ◽  
Khalid J. Alzahrani ◽  
...  

Abstract Recently, two cases of complete remission of classical Hodgkin lymphoma (cHL) and follicular lymphoma (FL) after SARS-CoV-2 infection were reported. However, the precise molecular mechanism of this rare event is yet to be understood. Here, we hypothesize a potential anti-tumor immune response of SARS-CoV-2 and based on computational approach show that (i) SARS-CoV-2 Spike-RBD may bind to extracellular domains of CD15, CD27, CD45, and CD152 receptors of cHL or FL, (ii) upon internalization, SARS-CoV-2 membrane (M) protein and Orf3a may bind to gamma-tubulin complex component 3 (GCP3) at its tubulin gamma-1 chain (TUBG1) binding site, (iii) M protein may also interact with TUBG1 blocking its binding to GCP3, (iv) both M and Orf3a may render the GCP2-GCP3 lateral binding where M possibly interacts with GCP2 at its GCP3 binding site and Orf3a to GCP3 at its GCP2 interacting residues, (v) interactions of M and Orf3a with these gamma-tubulin ring complex components potentially block the initial process of microtubule nucleation, leading to cell cycle arrest and apoptosis, (vi) Spike-RBD may also interact with and block PD-1 signaling similar to pembrolizumab and nivolumab like monoclonal antibodies and may induce B-cell apoptosis and remission, (vii) finally, the TRADD interacting PVQLSY motif of Epstein-Barr virus LMP-1, that is responsible for NF-kB mediated oncogenesis, potentially interacts with SARS-CoV-2 Mpro, nsp7, nsp10, and Spike proteins and may regulate the LMP-1 mediated cell proliferation. Taken together, our results suggest a possible therapeutic potential of SARS-CoV-2 in proliferative disorders.


1997 ◽  
Vol 110 (20) ◽  
pp. 2533-2545 ◽  
Author(s):  
A.M. Tassin ◽  
C. Celati ◽  
M. Paintrand ◽  
M. Bornens

Although varying in size and complexity, centrosomes have conserved functions throughout the evolutionary range of eukaryotes, and thus may display conserved components. In this work, we took advantage of the recent advances in the isolation of the budding yeast spindle pole body, the development of specific immunological probes and the molecular characterisation of genes involved in spindle pole body duplication or assembly. Screening a monoclonal antibody library against Saccharomyces cerevisiae spindle pole body components, we found that two monoclonal antibodies, directed against two different parts of the yeast Spc110p, decorate the centrosome from mammalian cells in an asymmetrical manner. Western blot experiments identified a 100 kDa protein specifically enriched in centrosome preparations from human cells. This protein is phosphorylated during mitosis and is tightly associated with the centrosome: only denaturing conditions such as 8 M urea were able to solubilise it. Purified immunoglobulins directed against Spc110p inhibit microtubule nucleation on isolated human centrosomes, using brain phosphocellulose-tubulin or Xenopus egg extract tubulin. This result suggested that the centrosomal 100 kDa protein could be involved in a microtubule nucleation complex. To test this hypothesis, we turned to Xenopus species, in which mAb anti-Spc110p decorated centrosomes from somatic cells and identified a 116 kDa protein in egg extract. We performed a partial purification of the gamma-tubulin-ring complex from egg extract. Sucrose gradient sedimentation, immunoprecipitation and native gels demonstrated that the Xenopus 116 kDa protein and gamma-tubulin were found in the same complex. Altogether, these results suggest the existence of an yeast Spc110-related protein in vertebrate centrosomes which is involved in microtubule nucleation.


Open Biology ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 170202 ◽  
Author(s):  
Sirong Ou ◽  
Mei-Hua Tan ◽  
Ting Weng ◽  
HoiYeung Li ◽  
Cheng-Gee Koh

Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.


2006 ◽  
Vol 172 (4) ◽  
pp. 505-515 ◽  
Author(s):  
Laurence Haren ◽  
Marie-Hélène Remy ◽  
Ingrid Bazin ◽  
Isabelle Callebaut ◽  
Michel Wright ◽  
...  

The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein γ-tubulin. In mammals, γ-tubulin associates with additional proteins into a large complex, the γ-tubulin ring complex (γTuRC). We characterize NEDD1, a centrosomal protein that associates with γTuRCs. We show that the majority of γTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of γ-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to γTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of γ-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of γ-tubulin to the centrosome.


2000 ◽  
Vol 113 (17) ◽  
pp. 3013-3023 ◽  
Author(s):  
M.M. Mogensen ◽  
A. Malik ◽  
M. Piel ◽  
V. Bouckson-Castaing ◽  
M. Bornens

The novel concept of a centrosomal anchoring complex, which is distinct from the gamma-tubulin nucleating complex, has previously been proposed following studies on cochlear epithelial cells. In this investigation we present evidence from two different cell systems which suggests that the centrosomal protein ninein is a strong candidate for the proposed anchoring complex. Ninein has recently been observed in cultured fibroblast cells to localise primarily to the post-mitotic mother centriole, which is the focus for a classic radial microtubule array. We show here by immunoelectron microscopical analyses of centrosomes from mouse L929 cells that ninein concentrates at the appendages surrounding the mother centriole and at the microtubule minus-ends. We further show that localisation of ninein in the cochlear supporting epithelial cells, where the vast majority of the microtubule minus-ends are associated with apical non-centrosomal sites, suggests that it is not directly involved in microtubule nucleation. Ninein seems to play an important role in the positioning and anchorage of the microtubule minus-ends in these epithelial cells. Evidence is presented which suggests that ninein is released from the centrosome, translocated with the microtubules, and is responsible for the anchorage of microtubule minus-ends to the apical sites. We propose that ninein is a non-nucleating microtubule minus-end associated protein which may have a dual role as a minus-end capping and anchoring protein.


2000 ◽  
Vol 151 (7) ◽  
pp. 1525-1536 ◽  
Author(s):  
Lijun Zhang ◽  
Thomas J. Keating ◽  
Andrew Wilde ◽  
Gary G. Borisy ◽  
Yixian Zheng

The γ-tubulin ring complex (γTuRC), purified from the cytoplasm of vertebrate and invertebrate cells, is a microtubule nucleator in vitro. Structural studies have shown that γTuRC is a structure shaped like a lock-washer and topped with a cap. Microtubules are thought to nucleate from the uncapped side of the γTuRC. Consequently, the cap structure of the γTuRC is distal to the base of the microtubules, giving the end of the microtubule the shape of a pointed cap. Here, we report the cloning and characterization of a new subunit of Xenopus γTuRC, Xgrip210. We show that Xgrip210 is a conserved centrosomal protein that is essential for the formation of γTuRC. Using immunogold labeling, we found that Xgrip210 is localized to the ends of microtubules nucleated by the γTuRC and that its localization is more distal, toward the tip of the γTuRC-cap structure, than that of γ-tubulin. Immunodepletion of Xgrip210 blocks not only the assembly of the γTuRC, but also the recruitment of γ-tubulin and its interacting protein, Xgrip109, to the centrosome. These results suggest that Xgrip210 is a component of the γTuRC cap structure that is required for the assembly of the γTuRC.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Raymundo Alfaro-Aco ◽  
Akanksha Thawani ◽  
Sabine Petry

Microtubules are nucleated from specific locations at precise times in the cell cycle. However, the factors that constitute these microtubule nucleation pathways and their mode of action still need to be identified. Using purified Xenopus laevis proteins we biochemically reconstitute branching microtubule nucleation, which is critical for chromosome segregation. We found that besides the microtubule nucleator gamma-tubulin ring complex (γ-TuRC), the branching effectors augmin and TPX2 are required to efficiently nucleate microtubules from pre-existing microtubules. TPX2 has the unexpected capacity to directly recruit γ-TuRC as well as augmin, which in turn targets more γ-TuRC along the microtubule lattice. TPX2 and augmin enable γ-TuRC-dependent microtubule nucleation at preferred branching angles of less than 90 degrees from regularly-spaced patches along microtubules. This work provides a blueprint for other microtubule nucleation pathways and helps explain how microtubules are generated in the spindle.


Sign in / Sign up

Export Citation Format

Share Document