scholarly journals Whole-transcriptome sequencing identifies a distinct subtype of acute lymphoblastic leukemia with predominant genomic abnormalities ofEP300andCREBBP

2016 ◽  
Vol 27 (2) ◽  
pp. 185-195 ◽  
Author(s):  
Maoxiang Qian ◽  
Hui Zhang ◽  
Shirley Kow-Yin Kham ◽  
Shuguang Liu ◽  
Chuang Jiang ◽  
...  
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2817-2817
Author(s):  
Yasuo Kubota ◽  
Kumiko Uryu ◽  
Tatsuya Ito ◽  
Masafumi Seki ◽  
Tomoya Isobe ◽  
...  

Abstract Background Acute lymphoblastic leukemia (ALL) in Down syndrome (DS) have uncommon genetic alterations such as mutations of JAK2, RAS, and overexpressions of CRLF2. These findings suggest DS-ALL may have unique biological features compared with non-DS-ALL. While recent studies implicated HMGN1 or DYRK1A in chromosome 21 were associated with molecular pathogenesis of DS-ALL, it remains to be elucidated what predispose DS children to develop ALL. Materials and Methods We performed whole transcriptome sequencing, targeted deep sequencing, and SNP array analysis in 25 DS-ALL samples, which included four ETV6-RUNX1 fusions and one high hyperdiploid. To compare with DS-ALL, we also performed whole transcriptome sequencing and whole exome sequencing to 118 non-DS-ALL samples, which included several subtypes such as ETV6-RUNX1 or BCR-ABL1. To cluster gene expression profiling, we applied the hierarchical clustering method. The detection of Ph-like signatures was performed by the hierarchical clustering by the gene set reported by Harvey. Results In expression analysis, we identified 19 fusions in 25 DS-ALL samples. These fusions included 15 recurrent fusions in pediatric BCP-ALL and 4 novel fusions, which including SSBP3-DHCR24, PDGFA-TTYH3, and NIN-NDUFA6. In novel fusions, PDGFA-TTYH3 fusions were detected in two DS-ALL samples. The hierarchical clustering analysis (Figure 1) combining 25 DS-ALL with 123 non-DS ALL samples. In our cohort, we defined samples with PAX5 alteration only such as a mutation or fusion as PAX5-altered. This clustering revealed ALL samples were divided into six clusters (cluster E1 to E6). Among six clusters, DS-ALL samples were divided into four clusters. In these four clusters, chi-square test revealed the significant enrichment of DS-ALL in E6 cluster. Importantly, our expression analysis revealed DS-ALL samples were highly heterogeneous and had the same expression pattern corresponding to each subtype same as non-DS-ALL. Cluster E3 included most samples with PAX5 fusions. All samples with ETV6-RUNX1 fusions were classified into cluster E4. Most samples of high hyperdiploid were classified into cluster E5. Cluster E6 was characterized by BCR-ABL1 fusions and Ph-like signatures. We detected 21 samples had Ph-like signatures, which included seven DS-ALL samples and 14 non-DS-ALL samples. Though we also analyzed differentially expressed genes between DS-ALL and non-DS-ALL, no genes on chromosome 21 such as HNGN1 or DYRK1A was significantly expressed. To investigate a relation between expression and genomic status, we further searched mutational analysis and copy number analysis (Figure 2). In 25 DS-ALL samples, six samples revealed JAK2 mutations and CRLF2 fusions. Interestingly, all of these six samples had Ph-like signatures. In cluster E5, one non-DS-ALL sample revealed JAK2 mutation and CRLF2 fusion and this particular sample was expected to have the Ph-like signature. To detect other Ph-like samples, we performed hierarchical clustering of 143 ALL samples based on the genes with a significantly (adjusted P value <0.0001) high expression in already detected 21 Ph-like samples. This analysis revealed three additional samples (two DS-ALL and one non-DS-ALL) had Ph-like signatures. Intriguingly, Ph-like samples accounted for 36% in 25 DS-ALL samples. In contrast, because several subtypes in non-DS-ALL showed mutations of RAS pathway genes, mutations of RAS pathway genes are common drivers in pediatric BCP-ALL. Copy number analysis elucidated one DS-ALL sample in cluster E3 had a known focal amplification of chromosome 9 involving exon 2 to 5 of PAX5, which may result in dysfunction of PAX5. Though no report analyzed PAX5 status except for deletion in DS-ALL, DS-ALL had not only deletion of PAX5, but also miscellaneous aberrations such as amplification or fusion. One DS-ALL sample without ETV6-RUNX1 in cluster E4 had homozygous deletions of ETV6, implicating ETV6-RUNX1-like signature. Conclusion Our result suggested DS-ALL were highly heterogeneous. Though expression profiles of DS-ALL had similar to non-DS-ALL, frequencies of subtypes in DS-ALL were quite different from non-DS-ALL, that is, low incidence of ETV6-RUNX1 or HeH, and high incidence of Ph-like signatures. Because molecular targeting agents such as imatinib or ruxolitinib improve the prognosis of Ph-like ALL, these agents may be also promising for treatment of DS-ALL. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
pp. 106689692110313
Author(s):  
Alexander M. Strait ◽  
Julia A. Bridge ◽  
Anthony J. Iafrate ◽  
Marilyn M. Li ◽  
Feng Xu ◽  
...  

Myofibroblastoma is a rare, benign stromal tumor with a diverse morphologic spectrum. Mammary-type myofibroblastoma (MTMF) is the extra-mammary counterpart of this neoplasm and its occurrence throughout the body has become increasingly recognized. Similar morphologic variations of MTMF have now been described which mirror those seen in the breast. We describe a case of intra-abdominal MTMF composed of short fascicles of eosinophilic spindle cells admixed with mature adipose tissue. The spindle cells stained diffusely positive for CD34, desmin, smooth muscle actin, and h-caldesmon by immunohistochemistry. Concurrent loss of RB1 (13q14) and 13q34 loci were confirmed by fluorescence in situ hybridization whereas anchored multiplex PCR and whole transcriptome sequencing did not reveal any pathognomonic fusions suggesting an alternative diagnosis. To the best of our knowledge this is the first documented case of leiomyomatous variant of MTMF.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 4035-4035
Author(s):  
Deqiang Wang ◽  
Xiaofeng Chen ◽  
Yaping Xu ◽  
Yuange He ◽  
Lifeng Li ◽  
...  

4035 Background: Gastric adenocarcinoma (GAC) is with a complex microenvironment of tumor cells. A better understanding of the immune landscape of GACs may lead to the improved treatment strategies with ICIs. Methods: To determine whether the molecular characteristics can serve in prognostic stratification of GACs, tumor tissue and blood samples were collected from 231 GAC patients. The median follow-up time was 34 months. The TCR profile was determined by TCR-β CDR3 sequencing while mutation and gene expression profiles were determined by whole exon and whole transcriptome sequencing, respectively. Tumour-infiltrating immune cells were characterized using immunofluorescence (IF) staining. Results: The results showed the OS of patients with high levels of TCR clonality (TCR clonal expansion) was significantly improved compared with patients with low levels (HR = 1.80 and 2.22, p = 0.022 and 0.008, respectively) in the whole group and in the subgroup of patients with stages IB to III disease. Furthermore, low local clonality was an independent risk factor for OS (adjusted-HR = 1.68 and 1.95, p = 0.049 and 0.029, respectively). Thus, TCR clonal expansion in tumour tissue had a strong prognostic value for GAC patients, independent of clinicopathological factors. Based on whole exon and whole transcriptome sequencing, RNF43/FBXW7/ARID2 mutations and local TCR clonality jointly impacted prognosis (p < 0.001), and functional changes in corresponding Wnt pathway/Notch pathway/SWI/SNF complex characterized a GAC subset with enhanced tumour immunogenicity and TCR clonal expansion. TCR CDR3 sequence similarity comparisons yielded clusters of TCR clones of likely similar functions. The most expansive TCR clusters negatively correlated with the percentage of subclonal mutations (Pearson r = -0.8183, p < 0.001), indicating that tumors with less genomic heterogeneity might induce a greater immune response. By IF staining and mutual correlation analysis, only M1 macrophages showed a significant positive correlation with local TCR clonality for epithelia, stroma, and total cell counts. Tumors were categorized according to the density of M1 macrophages, M1 macrophage infiltrated subtype was associated with favorable OS (p = 0.040 and 0.043) and its combination with the local TCR clonality improved prognosis stratification (p < 0.001). Finally, the scoring by local TCR clonality, RNF43/FBXW7/ARID2 mutations and M1 infiltration determined the best prognosis (p < 0.001). Conclusions: TCR profiles were associated with genomic alterations and may serve as a prognostic biomarker for GACs. A multi-omic model including TCR profiles might produce an improved stratification for treatments and outcomes.


Sign in / Sign up

Export Citation Format

Share Document