scholarly journals Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer's disease

2021 ◽  
pp. gr.272484.120 ◽  
Author(s):  
Jielin Xu ◽  
Pengyue Zhang ◽  
Yin Huang ◽  
Yadi Zhou ◽  
Yuan Hou ◽  
...  
2020 ◽  
Author(s):  
Jielin Xu ◽  
Pengyue Zhang ◽  
Yin Huang ◽  
Lynn Bekris ◽  
Justin Lathia ◽  
...  

AbstractSystematic identification of molecular networks in disease relevant immune cells of the nervous system is critical for elucidating the underlying pathophysiology of Alzheimer’s disease (AD). Two key immune cell types, disease-associated microglia (DAM) and disease-associated astrocytes (DAA), are biologically involved in AD pathobiology. Therefore, uncovering molecular determinants of DAM and DAA will enhance our understanding of AD biology, potentially identifying novel therapeutic targets for AD treatment. Here, we present an integrative, network-based methodology to uncover conserved molecular networks between DAM and DAA. Specifically, we leverage single-cell and single-nucleus RNA sequencing data from both AD transgenic mouse models and AD patient brains, drug-target networks, metabolite-enzyme associations, and the human protein-protein interactome, along with large-scale patient data validation from the MarketScan Medicare Supplemental Database. We find that common and unique molecular network regulators between DAM (i.e, PAK1, MAPK14, and SYK) and DAA (i.e., NFKB1, FOS, and JUN) are significantly enriched by multiple neuro-inflammatory pathways and well-known genetic variants (i.e., BIN1) from genome-wide association studies. Further network analysis reveal shared immune pathways between DAM and DAA, including Fc gamma R-mediated phagocytosis, Th17 cell differentiation, and chemokine signaling. Furthermore, integrative metabolite-enzyme network analyses imply that fatty acids (i.e., elaidic acid) and amino acids (i.e., glutamate, serine, and phenylalanine) may trigger molecular alterations between DAM and DAA. Finally, we prioritize repurposed drug candidates for potential treatment of AD by agents that specifically reverse dysregulated gene expression of DAM or DAA, including an antithrombotic anticoagulant triflusal, a beta2-adrenergic receptor agonist salbutamol, and the steroid medications (fluticasone and mometasone). Individuals taking fluticasone (an approved anti-inflammatory and inhaled corticosteroid) displayed a significantly decreased incidence of AD (hazard ratio (HR) = 0.858, 95% confidence interval [CI] 0.829-0.888, P < 0.0001) in retrospective case-control validation. Furthermore, propensity score matching cohort studies also confirmed an association of mometasone with reduced incidence of AD in comparison to fluticasone (HR =0.921, 95% CI 0.862-0.984, P < 0.0001).


2020 ◽  
Vol 200 ◽  
pp. 108204 ◽  
Author(s):  
Andrew P. Voigt ◽  
S. Scott Whitmore ◽  
Nicholas D. Lessing ◽  
Adam P. DeLuca ◽  
Budd A. Tucker ◽  
...  

2019 ◽  
Vol 122 (4) ◽  
pp. 1291-1296 ◽  
Author(s):  
Djuna von Maydell ◽  
Mehdi Jorfi

Microglia constitute ~10–20% of glial cells in the adult human brain. They are the resident phagocytic immune cells of the central nervous system and play an integral role as first responders during inflammation. Microglia are commonly classified as “HM” (homeostatic), “M1” (classically activated proinflammatory), or “M2” (alternatively activated). Multiple single-cell RNA-sequencing studies suggest that this discrete classification system does not accurately and fully capture the vast heterogeneity of microglial states in the brain. In fact, a recent single-cell RNA-sequencing study showed that microglia exist along a continuous spectrum of states. This spectrum spans heterogeneous populations of homeostatic and neuropathology-associated microglia in both healthy and Alzheimer’s disease (AD) mouse brains. Major risk factors, such as sex, age, and genes, modulate microglial states, suggesting that shifts along the trajectory might play a causal role in AD pathogenesis. This study provides important insight into the cellular mechanisms of AD and underlines the potential of novel cell-based therapies for AD.


2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Marta Olah ◽  
Vilas Menon ◽  
Naomi Habib ◽  
Mariko Taga ◽  
Yiyi Ma ◽  
...  

Data in Brief ◽  
2016 ◽  
Vol 7 ◽  
pp. 1491-1496
Author(s):  
Martin J. Ronis ◽  
Horacio Gomez-Acevedo ◽  
Michael L. Blackburn ◽  
Mario A. Cleves ◽  
Rohit Singhal ◽  
...  

Author(s):  
Liu-Lin Xiong ◽  
Lu-Lu Xue ◽  
Ruo-Lan Du ◽  
Rui-Ze Niu ◽  
Li Chen ◽  
...  

AbstractIn recent years, biomarkers have been integrated into the diagnostic process and have become increasingly indispensable for obtaining knowledge of the neurodegenerative processes in Alzheimer’s disease (AD). Peripheral blood mononuclear cells (PBMCs) in human blood have been reported to participate in a variety of neurodegenerative activities. Here, a single-cell RNA sequencing analysis of PBMCs from 4 AD patients (2 in the early stage, 2 in the late stage) and 2 normal controls was performed to explore the differential cell subpopulations in PBMCs of AD patients. A significant decrease in B cells was detected in the blood of AD patients. Furthermore, we further examined PBMCs from 43 AD patients and 41 normal subjects by fluorescence activated cell sorting (FACS), and combined with correlation analysis, we found that the reduction in B cells was closely correlated with the patients’ Clinical Dementia Rating (CDR) scores. To confirm the role of B cells in AD progression, functional experiments were performed in early-stage AD mice in which fibrous plaques were beginning to appear; the results demonstrated that B cell depletion in the early stage of AD markedly accelerated and aggravated cognitive dysfunction and augmented the Aβ burden in AD mice. Importantly, the experiments revealed 18 genes that were specifically upregulated and 7 genes that were specifically downregulated in B cells as the disease progressed, and several of these genes exhibited close correlation with AD. These findings identified possible B cell-based AD severity, which are anticipated to be conducive to the clinical identification of AD progression.


2016 ◽  
pp. elw035 ◽  
Author(s):  
Quanhu Sheng ◽  
Kasey Vickers ◽  
Shilin Zhao ◽  
Jing Wang ◽  
David C. Samuels ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document