scholarly journals Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in C. elegans

2021 ◽  
Author(s):  
Moein Rajaei ◽  
Ayush Shekhar Saxena ◽  
Lindsay M. Johnson ◽  
Michael C. Snyder ◽  
Timothy A. Crombie ◽  
...  

Important clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the laboratory as in nature. The base-substitution spectrum differs between C. elegans laboratory mutation accumulation (MA) experiments and the standing site-frequency spectrum, which has been argued to be in part owing to increased oxidative stress in the laboratory environment. Using genome sequence data from C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased oxidative stress, we find the base-substitution spectrum is similar between mev-1, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). Conversely, the rate of short insertions is greater in mev-1, consistent with studies in other organisms in which environmental stress increased the rate of insertion–deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are different from those of nonmononucleotide sequence, both for indels and base-substitutions, and whereas the nonmononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different, with a greater frequency of A:T → T:A transversions and an increased proportion of ±1-bp indels. The discrepancy in mutational spectra between laboratory MA experiments and natural variation is likely owing to a consistent (but unknown) effect of the laboratory environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.

2021 ◽  
Author(s):  
Moein Rajaei ◽  
Ayush Shekhar Saxena ◽  
Lindsay M. Johnson ◽  
Michael C. Snyder ◽  
Timothy A. Crombie ◽  
...  

AbstractImportant clues about natural selection can be gleaned from discrepancies between the properties of segregating genetic variants and of mutations accumulated experimentally under minimal selection, provided the mutational process is the same in the lab as in nature. The ratio of transitions to transversions (Ts/Tv) is consistently lower in C. elegans mutation accumulation (MA) experiments than in nature, which has been argued to be in part due to increased oxidative stress in the lab environment. Using whole-genome sequence data from a set of C. elegans MA lines carrying a mutation (mev-1) that increases the cellular titer of reactive oxygen species (ROS), leading to increased endogenous oxidative stress, we find that the base-substitution spectrum is similar between mev-1 lines, its wild-type progenitor (N2), and another set of MA lines derived from a different wild strain (PB306). By contrast, the rate of short insertions is greater in the mev-1 lines, consistent with studies in other organisms in which environmental stress led to an increase in the rate of insertion-deletion mutations. Further, the mutational properties of mononucleotide repeats in all strains are qualitatively different from those of non-mononucleotide sequence, both for indels and base-substitutions, and whereas the non-mononucleotide spectra are fairly similar between MA lines and wild isolates, the mononucleotide spectra are very different. The discrepancy in mutational spectra between lab MA experiments and natural variation is likely due to a consistent (but unknown) effect of the lab environment that manifests itself via different modes of mutability and/or repair at mononucleotide loci.


2021 ◽  
pp. 1-17
Author(s):  
Mani Iyer Prasanth ◽  
James Michael Brimson ◽  
Dicson Sheeja Malar ◽  
Anchalee Prasansuklab ◽  
Tewin Tencomnao

BACKGROUND: Streblus asper Lour., has been reported to have anti-aging and neuroprotective efficacies in vitro. OBJECTIVE: To analyze the anti-aging, anti-photoaging and neuroprotective efficacies of S. asper in Caenorhabditis elegans. METHODS: C. elegans (wild type and gene specific mutants) were treated with S. asper extract and analyzed for lifespan and other health benefits through physiological assays, fluorescence microscopy, qPCR and Western blot. RESULTS: The plant extract was found to increase the lifespan, reduce the accumulation of lipofuscin and modulate the expression of candidate genes. It could extend the lifespan of both daf-16 and daf-2 mutants whereas the pmk-1 mutant showed no effect. The activation of skn-1 was observed in skn-1::GFP transgenic strain and in qPCR expression. Further, the extract can extend the lifespan of UV-A exposed nematodes along with reducing ROS levels. Additionally, the extract also extends lifespan and reduces paralysis in Aβ transgenic strain, apart from reducing Aβ expression. CONCLUSIONS: S. asper was able to extend the lifespan and healthspan of C. elegans which was independent of DAF-16 pathway but dependent on SKN-1 and MAPK which could play a vital role in eliciting the anti-aging, anti-photoaging and neuroprotective effects, as the extract could impart oxidative stress resistance and neuroprotection.


2021 ◽  
Vol 118 (41) ◽  
pp. e2104832118
Author(s):  
Vinod K. Mony ◽  
Anna Drangowska-Way ◽  
Reka Albert ◽  
Emma Harrison ◽  
Abbas Ghaddar ◽  
...  

Plasticity in multicellular organisms involves signaling pathways converting contexts—either natural environmental challenges or laboratory perturbations—into context-specific changes in gene expression. Congruently, the interactions between the signaling molecules and transcription factors (TF) regulating these responses are also context specific. However, when a target gene responds across contexts, the upstream TF identified in one context is often inferred to regulate it across contexts. Reconciling these stable TF–target gene pair inferences with the context-specific nature of homeostatic responses is therefore needed. The induction of the Caenorhabditis elegans genes lipl-3 and lipl-4 is observed in many genetic contexts and is essential to survival during fasting. We find DAF-16/FOXO mediating lipl-4 induction in all contexts tested; hence, lipl-4 regulation seems context independent and compatible with across-context inferences. In contrast, DAF-16–mediated regulation of lipl-3 is context specific. DAF-16 reduces the induction of lipl-3 during fasting, yet it promotes it during oxidative stress. Through discrete dynamic modeling and genetic epistasis, we define that DAF-16 represses HLH-30/TFEB—the main TF activating lipl-3 during fasting. Contrastingly, DAF-16 activates the stress-responsive TF HSF-1 during oxidative stress, which promotes C. elegans survival through induction of lipl-3. Furthermore, the TF MXL-3 contributes to the dominance of HSF-1 at the expense of HLH-30 during oxidative stress but not during fasting. This study shows how context-specific diverting of functional interactions within a molecular network allows cells to specifically respond to a large number of contexts with a limited number of molecular players, a mode of transcriptional regulation we name “contextualized transcription.”


2020 ◽  
Author(s):  
Katherine Silliman ◽  
Jane L. Indorf ◽  
Nancy Knowlton ◽  
William E. Browne ◽  
Carla Hurt

AbstractThe formation of the Isthmus of Panama and final closure of the Central American Seaway (CAS) provides an independent calibration point for examining the rate of DNA substitutions. This vicariant event has been widely used to estimate the substitution rate across mitochondrial genomes and to date evolutionary events in other taxonomic groups. Nuclear sequence data is increasingly being used to complement mitochondrial datasets for phylogenetic and evolutionary investigations; these studies would benefit from information regarding the rate and pattern of DNA substitutions derived from the nuclear genome. To estimate this genomewide neutral mutation rate (μ), genotype-by-sequencing (GBS) datasets were generated for three transisthmian species pairs in Alpheus snapping shrimp. Using a Bayesian coalescent approach (G-PhoCS) applied to 44,960 GBS loci, we estimated μ to be 2.64E-9 substitutions/site/year, when calibrated with the closure of the CAS at 3 Ma. This estimate is remarkably similar to experimentally derived mutation rates in model arthropod systems, strengthening the argument for a recent closure of the CAS. To our knowledge this is the first use of transisthmian species pairs to calibrate the rate of molecular evolution from GBS data.


2021 ◽  
Author(s):  
Dingxia Feng ◽  
Zhiwei Zhai ◽  
Zhiyong Shao ◽  
Yi Zhang ◽  
Jo Anne Powell-Coffman

AbstractDuring development, homeostasis, and disease, organisms must balance responses that allow adaptation to low oxygen (hypoxia) with those that protect cells from oxidative stress. The evolutionarily conserved hypoxia-inducible factors are central to these processes, as they orchestrate transcriptional responses to oxygen deprivation. Here, we employ genetic strategies in C. elegans to identify stress-responsive genes and pathways that modulate the HIF-1 hypoxia-inducible factor and facilitate oxygen homeostasis. Through a genome-wide RNAi screen, we show that RNAi-mediated mitochondrial or proteasomal dysfunction increases the expression of hypoxia-responsive reporter Pnhr-57:GFP in C. elegans. Interestingly, only a subset of these effects requires hif-1. Of particular importance, we found that skn-1 RNAi increases the expression of hypoxia-responsive reporter Pnhr-57:GFP and elevates HIF-1 protein levels. The SKN-1/NRF transcription factor has been shown to promote oxidative stress resistance. We present evidence that the crosstalk between HIF-1 and SKN-1 is mediated by EGL-9, the prolyl hydroxylase that targets HIF-1 for oxygen-dependent degradation. Treatment that induces SKN-1, such as heat, increases expression of a Pegl-9:GFP reporter, and this effect requires skn-1 function and a putative SKN-1 binding site in egl-9 regulatory sequences. Collectively, these data support a model in which SKN-1 promotes egl-9 transcription, thereby inhibiting HIF-1. We propose that this interaction enables animals to adapt quickly to changes in cellular oxygenation and to better survive accompanying oxidative stress.


Author(s):  
B Meier ◽  
NV Volkova ◽  
Y Hong ◽  
S Bertolini ◽  
V González-Huici ◽  
...  

AbstractGenome integrity is particularly important in germ cells to faithfully preserve genetic information across generations. As yet little is known about the contribution of various DNA repair pathways to prevent mutagenesis. Using the C. elegans model we analyse mutational spectra that arise in wild-type and 61 DNA repair and DNA damage response mutants cultivated over multiple generations. Overall, 44% of lines show >2-fold increased mutagenesis with a broad spectrum of mutational outcomes including changes in single or multiple types of base substitutions induced by defects in base excision or nucleotide excision repair, or elevated levels of 50-400 bp deletions in translesion polymerase mutants rev-3(pol ζ) and polh-1(pol η). Mutational signatures associated with defective homologous recombination fall into two classes: 1) mutants lacking brc-1/BRCA1 or rad-51/RAD51 paralogs show elevated base substitutions, indels and structural variants, while 2) deficiency for MUS-81/MUS81 and SLX-1/SLX1 nucleases, and HIM-6/BLM, HELQ-1/HELQ and RTEL-1/RTEL1 helicases primarily cause structural variants. Genome-wide investigation of mutagenesis patterns identified elevated rates of tandem duplications often associated with inverted repeats in helq-1 mutants, and a unique pattern of ‘translocation’ events involving homeologous sequences in rip-1 paralog mutants. atm-1/ATM DNA damage checkpoint mutants harboured complex structural variants enriched in subtelomeric regions, and chromosome end-to-end fusions. Finally, while inactivation of the p53-like gene cep-1 did not affect mutagenesis, combined brc-1 cep-1 deficiency displayed increased, locally clustered mutagenesis. In summary, we provide a global view of how DNA repair pathways prevent germ cell mutagenesis.


2020 ◽  
Vol 13 (11) ◽  
pp. 355
Author(s):  
Paula Aranaz ◽  
David Navarro-Herrera ◽  
María Zabala ◽  
Ana Romo-Hualde ◽  
Miguel López-Yoldi ◽  
...  

Supplementation with bioactive compounds capable of regulating energy homeostasis is a promising strategy to manage obesity. Here, we have screened the ability of different phenolic compounds (myricetin, kaempferol, naringin, hesperidin, apigenin, luteolin, resveratrol, curcumin, and epicatechin) and phenolic acids (p-coumaric, ellagic, ferulic, gallic, and vanillic acids) regulating C. elegans fat accumulation. Resveratrol exhibited the strongest lipid-reducing activity, which was accompanied by the improvement of lifespan, oxidative stress, and aging, without affecting worm development. Whole-genome expression microarrays demonstrated that resveratrol affected fat mobilization, fatty acid metabolism, and unfolded protein response of the endoplasmic reticulum (UPRER), mimicking the response to calorie restriction. Apigenin induced the oxidative stress response and lipid mobilization, while vanillic acid affected the unfolded-protein response in ER. In summary, our data demonstrates that phenolic compounds exert a lipid-reducing activity in C. elegans through different biological processes and signaling pathways, including those related with lipid mobilization and fatty acid metabolism, oxidative stress, aging, and UPR-ER response. These findings open the door to the possibility of combining them in order to achieve complementary activity against obesity-related disorders.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Jing Ma ◽  
Xiaoyuan Xu ◽  
Ranran Wang ◽  
Haijing Yan ◽  
Huijuan Yao ◽  
...  

Abstract Background The present study was designed to investigate the protective effects and mechanisms of carnosine on lipopolysaccharide (LPS)-induced injury in Caenorhabditis elegans. Methods C. elegans individuals were stimulated for 24 h with LPS (100 μg/mL), with or without carnosine (0.1, 1, 10 mM). The survival rates and behaviors were determined. The activities of superoxide dismutase (SOD), glutathione reductase (GR), and catalase (CAT) and levels of malondialdehyde (MDA) and glutathione (GSH) were determined using the respective kits. Reverse transcription polymerase chain reaction (RT-PCR) was performed to validate the differential expression of sod-1, sod-2, sod-3, daf-16, ced-3, ced-9, sek-1, and pmk-1. Western blotting was used to determine the levels of SEK1, p38 mitogen-activated protein kinase (MAPK), cleaved caspase3, and Bcl-2. C. elegans sek-1 (km2) mutants and pmk-1 (km25) mutants were used to elucidate the role of the p38 MAPK signaling pathway. Results Carnosine improved the survival of LPS-treated C. elegans and rescued behavioral phenotypes. It also restrained oxidative stress by decreasing MDA levels and increasing SOD, GR, CAT, and GSH levels. RT-PCR results showed that carnosine treatment of wild-type C. elegans up-regulated the mRNA expression of the antioxidant-related genes sod-1, sod-2, sod-3, and daf-16. The expression of the anti-apoptosis-related gene ced-9 and apoptosis-related gene ced-3 was reversed by carnosine. In addition, carnosine treatment significantly decreased cleaved caspase3 levels and increased Bcl-2 levels in LPS-treated C. elegans. Apoptosis in the loss-of-function strains of the p38 MAPK signaling pathway was suppressed under LPS stress; however, the apoptotic effects of LPS were blocked in the sek-1 and pmk-1 mutants. The expression levels of sek-1 and pmk-1 mRNAs were up-regulated by LPS and reversed by carnosine. Finally, the expression of p-p38MAPK and SEK1 was significantly increased by LPS, which was reversed by carnosine. Conclusion Carnosine treatment protected against LPS injury by decreasing oxidative stress and inhibiting apoptosis through the p38 MAPK pathway.


Sign in / Sign up

Export Citation Format

Share Document