Wigner function as the expectation value of a parity operator

1977 ◽  
Vol 15 (2) ◽  
pp. 449-450 ◽  
Author(s):  
Antoine Royer
Quantum ◽  
2020 ◽  
Vol 4 ◽  
pp. 317
Author(s):  
U. Seyfarth ◽  
A. B. Klimov ◽  
H. de Guise ◽  
G. Leuchs ◽  
L. L. Sanchez-Soto

In spite of their potential usefulness, Wigner functions for systems with SU(1,1) symmetry have not been explored thus far. We address this problem from a physically-motivated perspective, with an eye towards applications in modern metrology. Starting from two independent modes, and after getting rid of the irrelevant degrees of freedom, we derive in a consistent way a Wigner distribution for SU(1,1). This distribution appears as the expectation value of the displaced parity operator, which suggests a direct way to experimentally sample it. We show how this formalism works in some relevant examples.Dedication: While this manuscript was under review, we learnt with great sadness of the untimely passing of our colleague and friend Jonathan Dowling. Through his outstanding scientific work, his kind attitude, and his inimitable humor, he leaves behind a rich legacy for all of us. Our work on SU(1,1) came as a result of long conversations during his frequent visits to Erlangen. We dedicate this paper to his memory.


1994 ◽  
Vol 190 (5-6) ◽  
pp. 370-372 ◽  
Author(s):  
Hui Li

1986 ◽  
Vol 114 (8-9) ◽  
pp. 440-444 ◽  
Author(s):  
C. Dewdney ◽  
P.R. Holland ◽  
A. Kyprianidis ◽  
J.P. Vigier

Author(s):  
R. Hegerl ◽  
A. Feltynowski ◽  
B. Grill

Till now correlation functions have been used in electron microscopy for two purposes: a) to find the common origin of two micrographs representing the same object, b) to check the optical parameters e. g. the focus. There is a third possibility of application, if all optical parameters are constant during a series of exposures. In this case all differences between the micrographs can only be caused by different noise distributions and by modifications of the object induced by radiation.Because of the electron noise, a discrete bright field image can be considered as a stochastic series Pm,where i denotes the number of the image and m (m = 1,.., M) the image element. Assuming a stable object, the expectation value of Pm would be Ηm for all images. The electron noise can be introduced by addition of stationary, mutual independent random variables nm with zero expectation and the variance. It is possible to treat the modifications of the object as a noise, too.


2019 ◽  
Author(s):  
Matheus Pereira Lobo

This article addresses the connection of the UNCERTAINTY PRINCIPLE with the WIGNER FUNCTION.


Author(s):  
Michael Kachelriess

Noethers theorem shows that continuous global symmetries lead classically to conservation laws. Such symmetries can be divided into spacetime and internal symmetries. The invariance of Minkowski space-time under global Poincaré transformations leads to the conservation of the four-momentum and the total angular momentum. Examples for conserved charges due to internal symmetries are electric and colour charge. The vacuum expectation value of a Noether current is shown to beconserved in a quantum field theory if the symmetry transformation keeps the path-integral measure invariant.


2014 ◽  
Vol 29 (21) ◽  
pp. 1444010
Author(s):  
Bruce H. J. McKellar ◽  
T. J. Goldman ◽  
G. J. Stephenson

If fermions interact with a scalar field, and there are many fermions present the scalar field may develop an expectation value and generate an effective mass for the fermions. This can lead to the formation of fermion clusters, which could be relevant for neutrino astrophysics and for dark matter astrophysics. Because this system may exhibit negative pressure, it also leads to a model of dark energy.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Teresa Bautista ◽  
Lorenzo Casarin ◽  
Hadi Godazgar

Abstract Motivated by the goal of applying the average null energy condition (ANEC) to renormalisation group flows, we calculate in λϕ4 theory the expectation value of the ANEC operator in a particular scalar state perturbatively up to third order in the quartic coupling and verify the expected CFT answer. The work provides the technical tools for studying the expectation value of the ANEC operator in more interesting states, for example tensorial states relevant to the Hofman-Maldacena collider bounds, away from critical points.


Sign in / Sign up

Export Citation Format

Share Document