Surface localized phonon modes at the Si(553)-Au nanowire system

2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Julian Plaickner ◽  
Eugen Speiser ◽  
Christian Braun ◽  
Wolf Gero Schmidt ◽  
Norbert Esser ◽  
...  
Keyword(s):  
Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 286
Author(s):  
Valery Davydov ◽  
Evgenii Roginskii ◽  
Yuri Kitaev ◽  
Alexander Smirnov ◽  
Ilya Eliseyev ◽  
...  

We report the results of experimental and theoretical studies of phonon modes in GaN/AlN superlattices (SLs) with a period of several atomic layers, grown by submonolayer digital plasma-assisted molecular-beam epitaxy, which have a great potential for use in quantum and stress engineering. Using detailed group-theoretical analysis, the genesis of the SL vibrational modes from the modes of bulk AlN and GaN crystals is established. Ab initio calculations in the framework of the density functional theory, aimed at studying the phonon states, are performed for SLs with both equal and unequal layer thicknesses. The frequencies of the vibrational modes are calculated, and atomic displacement patterns are obtained. Raman spectra are calculated and compared with the experimental ones. The results of the ab initio calculations are in good agreement with the experimental Raman spectra and the results of the group-theoretical analysis. As a result of comprehensive studies, the correlations between the parameters of acoustic and optical phonons and the structure of SLs are obtained. This opens up new possibilities for the analysis of the structural characteristics of short-period GaN/AlN SLs using Raman spectroscopy. The results obtained can be used to optimize the growth technologies aimed to form structurally perfect short-period GaN/AlN SLs.


2021 ◽  
pp. 108128652110134
Author(s):  
B. Zhang ◽  
X.H. Wang ◽  
L. Elmaimouni ◽  
J.G. Yu ◽  
X.M. Zhang

In one-dimensional hexagonal piezoelectric quasi-crystals, there exist the phonon–phason, electro–phonon, and electro–phason couplings. Therefore, the phonon–phason coupling and piezoelectric effects on axial guided wave characteristics in one-dimensional hexagonal functionally graded piezoelectric quasi-crystal (FGPQC) cylinders are investigated by utilizing the Legendre polynomial series method. The dispersion curves and cut-off frequencies are illustrated. Wave characteristics in three hollow cylinders with different quasi-periodic directions are comparatively studied. Some new wave phenomena are revealed: the phonon–phason coupling and piezoelectric effects on the longitudinal and torsional phonon modes ( N = 0) vary as the quasi-periodic direction changes; the phonon–phason coupling effect on flexural–torsional modes in the r-, z-FGPQC hollow cylinders, and on flexural–longitudinal modes in ϑ-FGPQC hollow cylinders increases as N increases. The corresponding results obtained in this work lay the theoretical foundation for the design and manufacture of piezoelectric transducers with high resolution and energy-conversion efficiency.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Qingqian Qiu ◽  
Pengzhi Wu ◽  
Yifeng Hu ◽  
Jiwei Zhai ◽  
Tianshu Lai

Superlattice-like (SLL) phase-change film is considered to be a promising phase-change material because it provides more controllabilities for the optimization of multiple performances of phase-change films. However, the mechanism by which SLL structure affects the properties of phase-change films is not well-understood. Here, four SLL phase-change films [Ge8Sb92(15 nm)/Ge (x nm)]3 with different x are fabricated. Their behaviors of crystallization are investigated by measuring sheet resistance and coherent phonon spectroscopy, which show that the crystallization temperature (TC) of these films increases anomalously with x, rather than decreases as the interfacial effects model predicted. A new stress effect is proposed to explain the anomalous increase in TC with x. Raman spectroscopy reveals that Raman shifts of all phonon modes in SLL films deviate from their respective standard Raman shifts in stress-free crystalline films, confirming the presence of stress in SLL films. It is also shown that tensile and compressive stresses exist in Ge and Ge8Sb92 layers, respectively, which agrees with the lattice mismatch between the Ge and Ge8Sb92 constituent layers. It is also found that the stress reduces with increasing x. Such a thickness dependence of stress can be used to explain the increase in crystallization temperature of four SLL films with x according to stress-enhanced crystallization. Our results reveal a new mechanism to affect the crystallization behaviors of SLL phase-change films besides interfacial effect. Stress and interfacial effects actually coexist and compete in SLL films, which can be used to explain the reported anomalous change in crystallization temperature with the film thickness and cycle number of periods in SLL phase-change films.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Osiekowicz ◽  
D. Staszczuk ◽  
K. Olkowska-Pucko ◽  
Ł. Kipczak ◽  
M. Grzeszczyk ◽  
...  

AbstractThe temperature effect on the Raman scattering efficiency is investigated in $$\varepsilon$$ ε -GaSe and $$\gamma$$ γ -InSe crystals. We found that varying the temperature over a broad range from 5 to 350 K permits to achieve both the resonant conditions and the antiresonance behaviour in Raman scattering of the studied materials. The resonant conditions of Raman scattering are observed at about 270 K under the 1.96 eV excitation for GaSe due to the energy proximity of the optical band gap. In the case of InSe, the resonant Raman spectra are apparent at about 50 and 270 K under correspondingly the 2.41 eV and 2.54 eV excitations as a result of the energy proximity of the so-called B transition. Interestingly, the observed resonances for both materials are followed by an antiresonance behaviour noticeable at higher temperatures than the detected resonances. The significant variations of phonon-modes intensities can be explained in terms of electron-phonon coupling and quantum interference of contributions from different points of the Brillouin zone.


2021 ◽  
Vol 7 (8) ◽  
pp. 108
Author(s):  
Martin Friák ◽  
Miroslav Černý ◽  
Mojmír Šob

We performed a quantum mechanical study of segregation of Cu atoms toward antiphase boundaries (APBs) in Fe3Al. The computed concentration of Cu atoms was 3.125 at %. The APBs have been characterized by a shift of the lattice along the ⟨001⟩ crystallographic direction. The APB energy turns out to be lower for Cu atoms located directly at the APB interfaces and we found that it is equal to 84 mJ/m2. Both Cu atoms (as point defects) and APBs (as extended defects) have their specific impact on local magnetic moments of Fe atoms (mostly reduction of the magnitude). Their combined impact was found to be not just a simple sum of the effects of each of the defect types. The Cu atoms are predicted to segregate toward the studied APBs, but the related energy gain is very small and amounts to only 4 meV per Cu atom. We have also performed phonon calculations and found all studied states with different atomic configurations mechanically stable without any soft phonon modes. The band gap in phonon frequencies of Fe3Al is barely affected by Cu substituents but reduced by APBs. The phonon contributions to segregation-related energy changes are significant, ranging from a decrease by 16% at T = 0 K to an increase by 17% at T = 400 K (changes with respect to the segregation-related energy difference between static lattices). Importantly, we have also examined the differences in the phonon entropy and phonon energy induced by the Cu segregation and showed their strongly nonlinear trends.


ACS Photonics ◽  
2021 ◽  
Author(s):  
Maureen J. Lagos ◽  
Philip E. Batson ◽  
Zihan Lyu ◽  
Ulrich Hohenester

Sign in / Sign up

Export Citation Format

Share Document