scholarly journals Exciton spectroscopy of hexagonal boron nitride using nonresonant x-ray Raman scattering

2008 ◽  
Vol 77 (16) ◽  
Author(s):  
Yejun Feng ◽  
J. A. Soininen ◽  
A. L. Ankudinov ◽  
J. O. Cross ◽  
G. T. Seidler ◽  
...  
2011 ◽  
Vol 675-677 ◽  
pp. 131-134
Author(s):  
Yu Xia Cao ◽  
Ling Zhong Du ◽  
Wei Gang Zhang

CaB2O4 was added into hexagonal boron nitride (hBN) to improve the sintering behaviors of hBN. CaB2O4 and hBN were mixed and then pressed into plates. The plates were sintered at 2000°C for 5h under a N2 ambience. The phase compositions with different CaB2O4 contents were examined with X-ray diffraction analysis. The fracture cross-sections of the hBN plates were investigated by SEM. The apparent density and Rockwell hardness were also measured. The results show that the hBN particles had a plate-like shape and the grain sizes of hBN increased with increasing CaB2O4 contents. The apparent density and Rockwell hardness decreased with increasing CaB2O4 contents. When the CaB2O4 content was 15(wt) %, the hBN has the average grain sizes of 3μm in diameter and 200nm in thickness, the apparent density of 1.06 g/cm3 and the Rockwell hardness of 3, respectively.


Author(s):  
Jae-Kap Lee ◽  
Jin-Gyu Kim ◽  
K. P. S. S. Hembram ◽  
Seunggun Yu ◽  
Sang-Gil Lee

Hexagonal boron nitride (h-BN) has been generally interpreted as having an AA stacking sequence. Evidence is presented in this article indicating that typical commercial h-BN platelets (∼10–500 nm in thickness) exhibit stacks of parallel nanosheets (∼10 nm in thickness) predominantly in the AB sequence. The AB-stacked nanosheet occurs as a metastable phase of h-BN resulting from the preferred texture and lateral growth of armchair (110) planes. It appears as an independent nanosheet or unit for h-BN platelets. The analysis is supported by simulation of thin AB films (2–20 layers), which explains the unique X-ray diffraction pattern of h-BN. With this analysis and the role of pressure in commercial high-pressure high-temperature sintering (driving nucleation and parallelizing the in-plane crystalline growth of the nuclei), a growth mechanism is proposed for 2D h-BN (on a substrate) as `substrate-induced 2D growth', where the substrate plays the role of pressure.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shena M. Stanley ◽  
Amartya Chakrabarti ◽  
Joshua J. DeMuth ◽  
Vanessa E. Tempel ◽  
Narayan S. Hosmane

A novel catalyst-free methodology has been developed to prepare few-layer hexagonal boron nitride nanosheets using a bottom-up process. Scanning electron microscopy and transmission electron microscopy (both high and low resolution) exhibit evidence of less than ten layers of nanosheets with uniform dimension. X-ray diffraction pattern and other additional characterization techniques prove crystallinity and purity of the product.


2006 ◽  
Vol 73 (4) ◽  
Author(s):  
Alexey Bosak ◽  
Jorge Serrano ◽  
Michael Krisch ◽  
Kenji Watanabe ◽  
Takashi Taniguchi ◽  
...  

2012 ◽  
Vol 101 (19) ◽  
pp. 191604 ◽  
Author(s):  
Lu Hua Li ◽  
Mladen Petravic ◽  
Bruce C. C. Cowie ◽  
Tan Xing ◽  
Robert Peter ◽  
...  

2011 ◽  
Vol 1307 ◽  
Author(s):  
Boumédiène BenMoussa ◽  
Jan D’Haen ◽  
Christian Borschel ◽  
Marc Saitner ◽  
Ali Soltani ◽  
...  

ABSTRACTA recurrent problem in the synthesis of hexagonal boron nitride (h-BN) is contamination with oxygen and carbon, leading to possible detrimental effects on optical and electronic properties. Here it is shown that the addition of H2 to the N2/Ar mixture used during the deposition process, clearly suppresses the incorporation of these elements, reducing their combined level below 5 %. The surface morphology, assessed with scanning electron microscopy (SEM), revealed the presence of h-BN nanowalls, i.e. vertically positioned 2D structures consisting out of several h-BN sheets. While Fourier transform infrared (FTIR) spectroscopy revealed the sp2 nature of the bonds, confirming the hexagonal nature of the nanowalls, the quasi-perfect stoichiometry of the material was evidenced by combining energy dispersive X-ray analysis (EDX) and Rutherford backscattering spectroscopy (RBS). The dimensions and density of these walls are clearly film thickness dependent and cross-sectional TEM images confirmed the increasing level of porosity with film thickness. A dense layer of material is present at the substrate-film interface, which gradually evolves into the 2D nanowall structures.


MRS Advances ◽  
2019 ◽  
Vol 5 (14-15) ◽  
pp. 709-716
Author(s):  
Haley B. Harrison ◽  
Jeffrey R. Alston

AbstractBoron nitride nanotubes (BNNTs) and hexagonal boron nitride platelets (h-BNs) have received considerable attention for aerospace insulation applications due to their exceptional chemical and thermal stability. Presently, making BN nanomaterials compatible with polymer and composite matrices is challenging. Due to their inert and highly stable structure, h-BN and BNNTs are difficult to covalently functionalize. In this work, we present a novel sonochemical technique that enables covalent attachment of fluoroalkoxy substituents to the surface of BN nanomaterials in a controlled and metered process. Covalent functionalization is confirmed via colloidal stability analysis, FT-IR, and x-ray photoelectron spectroscopy (XPS).


Sign in / Sign up

Export Citation Format

Share Document