scholarly journals Thermal Casimir effect for the scalar field in flat spacetime under a helix boundary condition

2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Giulia Aleixo ◽  
Herondy F. Santana Mota
2014 ◽  
Vol 29 (02) ◽  
pp. 1450004 ◽  
Author(s):  
CHAO-JUN FENG ◽  
XIN-ZHOU LI ◽  
XIANG-HUA ZHAI

When one studies the Casimir effect, the periodic (anti-periodic) boundary condition is usually taken to mimic a periodic (anti-periodic) structure for a scalar field living in a flat space with a non-Euclidean topology. However, there could be an arbitrary phase difference between the value of the scalar field on one endpoint of the unit structure and that on the other endpoint, such as the structure of nanotubes. Then, in this paper, a periodic condition on the ends of the system with an additional phase factor, which is called the "quasi-periodic" condition, is imposed to investigate the corresponding Casimir effect. And an attractive or repulsive Casimir force is found, whose properties depend on the phase angle value. Especially, the Casimir effect disappears when the phase angle takes a particular value. High dimensional spacetime case is also investigated.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Connor Behan ◽  
Lorenzo Di Pietro ◽  
Edoardo Lauria ◽  
Balt C. van Rees

Abstract We study conformal boundary conditions for the theory of a single real scalar to investigate whether the known Dirichlet and Neumann conditions are the only possibilities. For this free bulk theory there are strong restrictions on the possible boundary dynamics. In particular, we find that the bulk-to-boundary operator expansion of the bulk field involves at most a ‘shadow pair’ of boundary fields, irrespective of the conformal boundary condition. We numerically analyze the four-point crossing equations for this shadow pair in the case of a three-dimensional boundary (so a four-dimensional scalar field) and find that large ranges of parameter space are excluded. However a ‘kink’ in the numerical bounds obeys all our consistency checks and might be an indication of a new conformal boundary condition.


2003 ◽  
Vol 33 (4) ◽  
pp. 860-866 ◽  
Author(s):  
A.C. Aguiar Pinto ◽  
T.M. Britto ◽  
R. Bunchaft ◽  
F. Pascoal ◽  
F.S.S. da Rosa

2019 ◽  
Vol 34 (08) ◽  
pp. 1950035
Author(s):  
Chun Yong Chew ◽  
Yong Kheng Goh

We study the electromagnetic Casimir interaction energy between two parallel concentric cylinders in [Formula: see text]-dimensional Minkowski space–time for different combinations of perfectly conducting boundary condition and infinitely permeable boundary condition. We consider two cases where one cylinder is outside each other and where one is inside the other. By solving the equation of motion and computing the TGTG formulas, explicit formulas for the Casimir interaction energy can be derived and asymptotic behavior of the Casimir interaction energy in the nanoregime is calculated by using perturbation technique. We computed the interaction energy analytically up to next-to-leading order term.


Author(s):  
Carlos A. R. Herdeiro ◽  
João M. S. Oliveira ◽  
Eugen Radu

AbstractRecently, no-go theorems for the existence of solitonic solutions in Einstein–Maxwell-scalar (EMS) models have been established (Herdeiro and Oliveira in Class Quantum Gravity 36(10):105015, 2019). Here we discuss how these theorems can be circumvented by a specific class of non-minimal coupling functions between a real, canonical scalar field and the electromagnetic field. When the non-minimal coupling function diverges in a specific way near the location of a point charge, it regularises all physical quantities yielding an everywhere regular, localised lump of energy. Such solutions are possible even in flat spacetime Maxwell-scalar models, wherein the model is fully integrable in the spherical sector, and exact solutions can be obtained, yielding an explicit mechanism to de-singularise the Coulomb field. Considering their gravitational backreaction, the corresponding (numerical) EMS solitons provide a simple example of self-gravitating, localised energy lumps.


2019 ◽  
Vol 28 (15) ◽  
pp. 1950173 ◽  
Author(s):  
Subhajyoti Pal ◽  
Sudip Mishra ◽  
Subenoy Chakraborty

This paper deals with a nonminimally coupled scalar field in the background of homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) flat spacetime. As Einstein field equations are coupled second-order nonlinear differential equations, it is very hard to find exact solutions. By suitable choice of variables, we transform Einstein field equations to an autonomous system and critical points are determined. We use center manifold theory to characterize nonhyperbolic critical points and are found to be saddle in nature. We discuss possible bifurcation scenarios, which indicate the existence of the cosmological bouncing model.


2019 ◽  
Vol 34 (20) ◽  
pp. 1950107
Author(s):  
Dêivid R. da Silva ◽  
M. B. Cruz ◽  
E. R. Bezerra de Mello

In this paper, we analyze the fermionic Casimir effects associated with a massless quantum field in the context of Lorentz symmetry violation approach based on Horava–Lifshitz methodology. In order to obtain these observables, we impose the standard MIT bag boundary condition on the fields on two large and parallel plates. Our main objectives are to investigate how the Casimir energy and pressure depend on the parameter associated with the breaking of Lorentz symmetry.


Universe ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. 181
Author(s):  
Aram A. Saharian

We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both cases, the contribution in the vacuum expectation value (VEV) of the energy–momentum tensor is separated explicitly and its behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of the gravitational field on the local properties of the quantum vacuum is essential at distance from the brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary, the VEV of the energy–momentum tensor is considered for scalar field with the Robin boundary condition, for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case, two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor boundary condition and the second one corresponds to the confining boundary condition used in QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar field is considered. The corresponding energy–momentum tensor, apart from the diagonal components, has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component, the Casimir force acquires a component parallel to the brane.


Sign in / Sign up

Export Citation Format

Share Document