scholarly journals Papapetrou energy-momentum tensor for Chern-Simons modified gravity

2007 ◽  
Vol 76 (4) ◽  
Author(s):  
David Guarrera ◽  
A. J. Hariton
1994 ◽  
Vol 09 (27) ◽  
pp. 4669-4700 ◽  
Author(s):  
A. KOVNER ◽  
P.S. KURZEPA

We perform the complete bosonization of (2+1)-dimensional QED with one fermionic flavor in the Hamiltonian formalism. The Fermi operators are explicitly constructed in terms of the vector potential and the electric field. We carefully specify the regularization procedure involved in the definition of these operators, and calculate the fermionic bilinears and the energy-momentum tensor. The algebra of bilinears exhibits the Schwinger terms which also appear in perturbation theory. The bosonic Hamiltonian is a local, polynomial functional of Ai and Ei, and we check explicitly the Lorentz invariance of the resulting bosonic theory. Our construction is conceptually very similar to Mandelstam’s construction in 1+1 dimensions, and is dissimilar from the recent bosonization attempts in 2+1 dimensions, which hinge crucially on the presence of a Chern-Simons term.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
B. Mishra ◽  
Sankarsan Tarai ◽  
S. K. Tripathy

Dynamics of an anisotropic universe is studied inf(R,T)gravity using a rescaled functionalf(R,T), whereRis the Ricci Scalar andTis the trace of energy-momentum tensor. Three models have been constructed assuming a power law expansion of the universe. Physical features of the models are discussed. The model parameters are constrained from a dimensional analysis. It is found from the work that the anisotropic Bianchi typeVIh(BVIh) model in the modified gravity generally favours a quintessence phase when the parameterhis either-1or0. We may not get viable models in conformity with the present day observation forh=1.


2014 ◽  
Vol 11 (08) ◽  
pp. 1450077 ◽  
Author(s):  
Davood Momeni ◽  
Ratbay Myrzakulov

Motivated by the newly proposal for gravity as the effect of the torsion scalar T and trace of the energy momentum tensor 𝒯, we investigate the cosmological reconstruction of different models of the Universe. Our aim here is to show that how this modified gravity model, f(T, 𝒯) is able to reproduce different epochs of the cosmological history. We explicitly show that f(T, 𝒯) can be reconstructed for ΛCDM as the most popular and consistent model. Also we study the mathematical reconstruction of f(T, 𝒯) for a flat cosmological background filled by two fluids mixture. Such model describes phantom–non-phantom era as well as the purely phantom cosmology. We extend our investigation to more cosmological models like perfect fluid, Chaplygin gas and massless scalar field. In each case we obtain some specific forms of f(T, 𝒯). These families of f(T, 𝒯) contain arbitrary function of torsion and trace of the energy momentum.


2020 ◽  
Vol 29 (15) ◽  
pp. 2050100
Author(s):  
B. Mishra ◽  
S. K. Tripathy ◽  
Saibal Ray

In this work, we present a few simple cosmological models under the modified theory of gravity in the particular form of [Formula: see text], where [Formula: see text] is the Ricci Scalar and [Formula: see text] is the trace of the energy–momentum tensor. Two special cosmological models are studied with (i) hyperbolic scale factor and (ii) specific form of the Hubble parameter. The models are observed to predict relevant cosmological parameters closer to the observational values. Both the models reduce to overlap with the [Formula: see text]CDM model at late times. We have discussed some interesting results related to wormhole solutions as evolved from our model. The possible occurrence of Big Trip in wormholes for the models are also discussed.


2019 ◽  
Vol 16 (10) ◽  
pp. 1950147 ◽  
Author(s):  
M. Zubair ◽  
Quratulien Muneer ◽  
Saira Waheed

In this paper, we explore the possibility of wormhole solutions existence exhibiting spherical symmetry in an interesting modified gravity based on Ricci scalar term and trace of energy–momentum tensor. For this reason, we assume the matter distribution as anisotropic fluid and a specific viable form of the generic function given by [Formula: see text] involving [Formula: see text] and [Formula: see text], two arbitrary constant parameters. For having a simplified form of the resulting field equations, we assume three different forms of EoS of the assumed matter contents. In each case, we find the numerical wormhole solutions and analyze their properties for the wormhole existence graphically. The graphical behavior of the energy condition bounds is also investigated in each case. It is found that a realistic wormhole solutions satisfying all the properties can be obtained in each case.


2021 ◽  
pp. 2150082
Author(s):  
A. H. Ziaie ◽  
H. Shabani ◽  
S. Ghaffari

In recent years, Rastall gravity is undergoing a considerable surge in popularity. This theory purports to be a modified gravity theory with a non-conserved energy–momentum tensor (EMT) and an unusual non-minimal coupling between matter and geometry. This work looks for the evolution of homogeneous spherical perturbations within the Universe in the context of Rastall gravity. Using the spherical Top-Hat collapse model, we seek for exact solutions in linear regime for density contrast of dark matter (DM) and dark energy (DE). We find that the Rastall parameter affects crucially the dynamics of density contrasts for DM and DE and the fate of spherical collapse is different in comparison to the case of general relativity (GR). Numerical solutions for perturbation equations in nonlinear regime reveal that DE perturbations could amplify the rate of growth of DM perturbations depending on the values of Rastall parameter.


2019 ◽  
Vol 16 (09) ◽  
pp. 1950144
Author(s):  
Abdul Jawad ◽  
Zoya Khan ◽  
Shamaila Rani

We discuss the thermodynamical behavior of homogeneous and isotropic universe (flat and non-flat) in the framework of [Formula: see text] gravity, where [Formula: see text] stands for Ricci scalar and [Formula: see text] signifies the trace of energy–momentum tensor of a scalar field [Formula: see text]. We follow through the first-order formalism that specifies the scalar field to the Hubble parameter which becomes [Formula: see text] By using Bekenstein–Hawking entropy, we analyze the validity of generalized second law of thermodynamics at apparent horizon for different values of [Formula: see text] and evaluate the equilibrium condition for all cases as well.


1990 ◽  
Vol 05 (17) ◽  
pp. 1365-1371 ◽  
Author(s):  
V.V. FOCK ◽  
YAN. I. KOGAN

The vacuum state of the Chern-Simons theory in the sl(2, R) coherent states representation is a generating functional for the chiral currents and the energy-momentum tensor.


Sign in / Sign up

Export Citation Format

Share Document