Thermodynamic consequences of specific modified gravity on the apparent horizon

2019 ◽  
Vol 16 (09) ◽  
pp. 1950144
Author(s):  
Abdul Jawad ◽  
Zoya Khan ◽  
Shamaila Rani

We discuss the thermodynamical behavior of homogeneous and isotropic universe (flat and non-flat) in the framework of [Formula: see text] gravity, where [Formula: see text] stands for Ricci scalar and [Formula: see text] signifies the trace of energy–momentum tensor of a scalar field [Formula: see text]. We follow through the first-order formalism that specifies the scalar field to the Hubble parameter which becomes [Formula: see text] By using Bekenstein–Hawking entropy, we analyze the validity of generalized second law of thermodynamics at apparent horizon for different values of [Formula: see text] and evaluate the equilibrium condition for all cases as well.

2019 ◽  
Vol 35 (04) ◽  
pp. 1950360 ◽  
Author(s):  
A. S. Sefiedgar ◽  
M. Mirzazadeh

Thermodynamics of the evolving Lorentzian wormhole at the apparent horizon is investigated in [Formula: see text] gravity. Redefining the energy density and the pressure, the continuity equation is satisfied and the field equations in [Formula: see text] gravity reduce to the ones in general relativity. However, the energy–momentum tensor includes all the corrections from [Formula: see text] gravity. Therefore, one can apply the standard entropy-area relation within [Formula: see text] gravity. It is shown that there may be an equivalency between the field equations and the first law of thermodynamics. It seems that an equilibrium thermodynamics may be held on the apparent horizon. The validity of the generalized second law of thermodynamics (GSL) is also investigated in the wormholes.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
M. Sharif ◽  
Ayesha Ikram

This paper explores the nonequilibrium behavior of thermodynamics at the apparent horizon of isotropic and homogeneous universe model in f(G,T) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energy-momentum tensor, resp.). We construct the corresponding field equations and analyze the first as well as generalized second law of thermodynamics in this scenario. It is found that an auxiliary term corresponding to entropy production appears due to the nonequilibrium picture of thermodynamics in first law. The universal condition for the validity of generalized second law of thermodynamics is also obtained. Finally, we check the validity of generalized second law of thermodynamics for the reconstructed f(G,T) models (de Sitter and power-law solutions). We conclude that this law holds for suitable choices of free parameters.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Salman Rafique

We consider the particle creation scenario in the dynamical Chern-Simons modified gravity in the presence of perfect fluid equation of state p=(γ-1)ρ. By assuming various modified entropies (Bekenstein entropy logarithmic entropy, power law correction, and Renyi entropy), we investigate the first law of thermodynamics and generalized second law of thermodynamics on the apparent horizon. In the presence of particle creation rate, we discuss the generalized second law of thermodynamics and thermal equilibrium condition. It is found that thermodynamics laws and equilibrium condition remain valid under certain conditions of parameters.


2014 ◽  
Vol 11 (08) ◽  
pp. 1450077 ◽  
Author(s):  
Davood Momeni ◽  
Ratbay Myrzakulov

Motivated by the newly proposal for gravity as the effect of the torsion scalar T and trace of the energy momentum tensor 𝒯, we investigate the cosmological reconstruction of different models of the Universe. Our aim here is to show that how this modified gravity model, f(T, 𝒯) is able to reproduce different epochs of the cosmological history. We explicitly show that f(T, 𝒯) can be reconstructed for ΛCDM as the most popular and consistent model. Also we study the mathematical reconstruction of f(T, 𝒯) for a flat cosmological background filled by two fluids mixture. Such model describes phantom–non-phantom era as well as the purely phantom cosmology. We extend our investigation to more cosmological models like perfect fluid, Chaplygin gas and massless scalar field. In each case we obtain some specific forms of f(T, 𝒯). These families of f(T, 𝒯) contain arbitrary function of torsion and trace of the energy momentum.


2018 ◽  
Vol 168 ◽  
pp. 03007
Author(s):  
Muhammad Sharif ◽  
Ayesha Ikram

In this work, we study the first and generalized second laws of thermodynamics at the apparent horizon of homogeneous and isotropic universe model in the context of f (G, T) gravity (G and T represent the Gauss-Bonnet invariant and trace of the energymomentum tensor, respectively). We formulate the corresponding field equations as well as determine the radius, temperature and entropy to analyze these laws. An extra term associated with entropy production is appeared in the first law due to the non-equilibrium treatment of thermodynamics. It is found that the universal condition is obtained to preserve the generalized second law of thermodynamics.


2019 ◽  
Vol 34 (07n08) ◽  
pp. 1950055 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Nadeem Azhar

Among various dark energy models, Tsallis holographic dark energy model shows the dynamical enthusiasm to describe the transition phase of the universe. In this paper, we consider Tsallis holographic dark energy with event and apparent horizon as an infrared cutoff in the framework of dynamical Chern–Simon modified gravity and non-flat FRW universe. We explore Hubble, equation of state and deceleration parameters and found that Hubble parameter lies in the range [Formula: see text] and [Formula: see text] for event and apparent horizon trajectories, respectively. It is mentioned here that the equation of state parameter lies within the range [Formula: see text] (event) and [Formula: see text] (apparent). Also, deceleration parameter for both cases show accelerated and decelerated phase of universe as well as cosmological constant. Moreover, we also checked the stability of our model through square speed of sound, which shows the positive behavior (exhibits the stability of the model). Finally, we observe that the generalized second law of thermodynamics remains valid in both cases of horizon.


2015 ◽  
Vol 30 (40) ◽  
pp. 1550214 ◽  
Author(s):  
A. F. Santos ◽  
C. J. Ferst

In this paper, we will examine the problem of violation of causality in [Formula: see text] modified gravity, where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of the energy–momentum tensor [Formula: see text]. We investigate the causality problem in two special cases, in the first we consider the matter content of the universe as a perfect fluid and in the second case, the matter content is a perfect fluid plus a scalar field.


2011 ◽  
Vol 20 (02) ◽  
pp. 161-168 ◽  
Author(s):  
MOHAMMAD R. SETARE ◽  
M. DEHGHANI

We investigate the energy–momentum tensor for a massless conformally coupled scalar field in the region between two curved surfaces in k = -1 static Robertson–Walker space–time. We assume that the scalar field satisfies the Robin boundary condition on the surfaces. Robertson–Walker space–time space is conformally related to Rindler space; as a result we can obtain vacuum expectation values of the energy–momentum tensor for a conformally invariant field in Robertson–Walker space–time space from the corresponding Rindler counterpart by the conformal transformation.


2012 ◽  
Vol 27 (14) ◽  
pp. 1250081 ◽  
Author(s):  
S. I. KRUGLOV

We postulate the second-order derivative equation with four parameters for spin-1/2 fermions possessing two mass states. For some choice of parameters fermions propagate with the superluminal speed. Thus, the novel tachyonic equation is suggested. The relativistic 20-component first-order wave equation is formulated and projection operators extracting states with definite energy and spin projections are obtained. The Lagrangian formulation of the first-order equation is presented and the electric current and energy–momentum tensor are found. The minimal and nonminimal electromagnetic interactions of fermions are considered and Schrödinger's form of the equation and the quantum-mechanical Hamiltonian are obtained. The canonical quantization of the field in the first-order formalism is performed and we find the vacuum expectation of chronological pairing of operators.


Sign in / Sign up

Export Citation Format

Share Document