scholarly journals Extrusion of chromatin loops by a composite loop extrusion factor

2021 ◽  
Vol 104 (2) ◽  
Author(s):  
Hao Yan ◽  
Ivan Surovtsev ◽  
Jessica F. Williams ◽  
Mary Lou P. Bailey ◽  
Megan C. King ◽  
...  
Keyword(s):  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Stéphane Deschamps ◽  
John A. Crow ◽  
Nadia Chaidir ◽  
Brooke Peterson-Burch ◽  
Sunil Kumar ◽  
...  

Abstract Background Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. Results Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. Conclusions Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


1995 ◽  
Vol 108 (9) ◽  
pp. 2927-2935 ◽  
Author(s):  
P.R. Cook

The basic structural elements of chromatin and chromosomes are reviewed. Then a model involving only three architectural motifs, nucleosomes, chromatin loops and transcription factories/chromomeres, is presented. Loops are tied through transcription factors and RNA polymerases to factories during interphase and to the remnants of those factories, chromomeres, during mitosis. On entry into mitosis, increased adhesiveness between nucleosomes and between factories drives a ‘sticky-end’ aggregation to the most compact and stable structure, a cylinder of nucleosomes around an axial chromomeric core.


2020 ◽  
Vol 228 (2) ◽  
pp. 466-471 ◽  
Author(s):  
Delfina Gagliardi ◽  
Pablo A. Manavella
Keyword(s):  

Author(s):  
Fu-Ying Dao ◽  
Hao Lv ◽  
Dan Zhang ◽  
Zi-Mei Zhang ◽  
Li Liu ◽  
...  

Abstract The protein Yin Yang 1 (YY1) could form dimers that facilitate the interaction between active enhancers and promoter-proximal elements. YY1-mediated enhancer–promoter interaction is the general feature of mammalian gene control. Recently, some computational methods have been developed to characterize the interactions between DNA elements by elucidating important features of chromatin folding; however, no computational methods have been developed for identifying the YY1-mediated chromatin loops. In this study, we developed a deep learning algorithm named DeepYY1 based on word2vec to determine whether a pair of YY1 motifs would form a loop. The proposed models showed a high prediction performance (AUCs$\ge$0.93) on both training datasets and testing datasets in different cell types, demonstrating that DeepYY1 has an excellent performance in the identification of the YY1-mediated chromatin loops. Our study also suggested that sequences play an important role in the formation of YY1-mediated chromatin loops. Furthermore, we briefly discussed the distribution of the replication origin site in the loops. Finally, a user-friendly web server was established, and it can be freely accessed at http://lin-group.cn/server/DeepYY1.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Masataka Kikuchi ◽  
Norikazu Hara ◽  
Mai Hasegawa ◽  
Akinori Miyashita ◽  
Ryozo Kuwano ◽  
...  

Abstract Background Genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) that may be genetic factors underlying Alzheimer’s disease (AD). However, how these AD-associated SNPs (AD SNPs) contribute to the pathogenesis of this disease is poorly understood because most of them are located in non-coding regions, such as introns and intergenic regions. Previous studies reported that some disease-associated SNPs affect regulatory elements including enhancers. We hypothesized that non-coding AD SNPs are located in enhancers and affect gene expression levels via chromatin loops. Methods To characterize AD SNPs within non-coding regions, we extracted 406 AD SNPs with GWAS p-values of less than 1.00 × 10− 6 from the GWAS catalog database. Of these, we selected 392 SNPs within non-coding regions. Next, we checked whether those non-coding AD SNPs were located in enhancers that typically regulate gene expression levels using publicly available data for enhancers that were predicted in 127 human tissues or cell types. We sought expression quantitative trait locus (eQTL) genes affected by non-coding AD SNPs within enhancers because enhancers are regulatory elements that influence the gene expression levels. To elucidate how the non-coding AD SNPs within enhancers affect the gene expression levels, we identified chromatin-chromatin interactions by Hi-C experiments. Results We report the following findings: (1) nearly 30% of non-coding AD SNPs are located in enhancers; (2) eQTL genes affected by non-coding AD SNPs within enhancers are associated with amyloid beta clearance, synaptic transmission, and immune responses; (3) 95% of the AD SNPs located in enhancers co-localize with their eQTL genes in topologically associating domains suggesting that regulation may occur through chromatin higher-order structures; (4) rs1476679 spatially contacts the promoters of eQTL genes via CTCF-CTCF interactions; (5) the effect of other AD SNPs such as rs7364180 is likely to be, at least in part, indirect through regulation of transcription factors that in turn regulate AD associated genes. Conclusion Our results suggest that non-coding AD SNPs may affect the function of enhancers thereby influencing the expression levels of surrounding or distant genes via chromatin loops. This result may explain how some non-coding AD SNPs contribute to AD pathogenesis.


Nature ◽  
2020 ◽  
Vol 583 (7818) ◽  
pp. 737-743 ◽  
Author(s):  
Fabian Grubert ◽  
Rohith Srivas ◽  
Damek  V Spacek ◽  
Maya Kasowski ◽  
Mariana Ruiz-Velasco ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document