scholarly journals Chromatin loops, gene positioning, and gene expression

2012 ◽  
Vol 3 ◽  
Author(s):  
Sjoerd Holwerda ◽  
Wouter de Laat
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Stéphane Deschamps ◽  
John A. Crow ◽  
Nadia Chaidir ◽  
Brooke Peterson-Burch ◽  
Sunil Kumar ◽  
...  

Abstract Background Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. Results Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. Conclusions Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Masataka Kikuchi ◽  
Norikazu Hara ◽  
Mai Hasegawa ◽  
Akinori Miyashita ◽  
Ryozo Kuwano ◽  
...  

Abstract Background Genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) that may be genetic factors underlying Alzheimer’s disease (AD). However, how these AD-associated SNPs (AD SNPs) contribute to the pathogenesis of this disease is poorly understood because most of them are located in non-coding regions, such as introns and intergenic regions. Previous studies reported that some disease-associated SNPs affect regulatory elements including enhancers. We hypothesized that non-coding AD SNPs are located in enhancers and affect gene expression levels via chromatin loops. Methods To characterize AD SNPs within non-coding regions, we extracted 406 AD SNPs with GWAS p-values of less than 1.00 × 10− 6 from the GWAS catalog database. Of these, we selected 392 SNPs within non-coding regions. Next, we checked whether those non-coding AD SNPs were located in enhancers that typically regulate gene expression levels using publicly available data for enhancers that were predicted in 127 human tissues or cell types. We sought expression quantitative trait locus (eQTL) genes affected by non-coding AD SNPs within enhancers because enhancers are regulatory elements that influence the gene expression levels. To elucidate how the non-coding AD SNPs within enhancers affect the gene expression levels, we identified chromatin-chromatin interactions by Hi-C experiments. Results We report the following findings: (1) nearly 30% of non-coding AD SNPs are located in enhancers; (2) eQTL genes affected by non-coding AD SNPs within enhancers are associated with amyloid beta clearance, synaptic transmission, and immune responses; (3) 95% of the AD SNPs located in enhancers co-localize with their eQTL genes in topologically associating domains suggesting that regulation may occur through chromatin higher-order structures; (4) rs1476679 spatially contacts the promoters of eQTL genes via CTCF-CTCF interactions; (5) the effect of other AD SNPs such as rs7364180 is likely to be, at least in part, indirect through regulation of transcription factors that in turn regulate AD associated genes. Conclusion Our results suggest that non-coding AD SNPs may affect the function of enhancers thereby influencing the expression levels of surrounding or distant genes via chromatin loops. This result may explain how some non-coding AD SNPs contribute to AD pathogenesis.


2021 ◽  
Author(s):  
Keerthi T Chathoth ◽  
Liudmila A Mikheeva ◽  
Gilles Crevel ◽  
Jareth C. Wolfe ◽  
Ioni Hunter ◽  
...  

AbstractThe DNA in many organisms, including humans, is shown to be organised in topologically associating domains (TADs). InDrosophila, several architectural proteins are enriched at TAD borders, but it is still unclear whether these proteins play a functional role in the formation and maintenance of TADs. Here, we show that depletion of BEAF-32, Cp190, Chro and Dref leads to changes in TAD organisation and chromatin loops. Their depletion predominantly affects TAD borders located in heterochromatin, while TAD borders located in euchromatin are resilient to these mutants. Furthermore, transcriptomic data has revealed hundreds of genes displaying differential expression in these mutants and showed that the majority of differentially expressed genes are located within reorganised TADs. Our work identifies a novel and functional role for architectural proteins at TAD borders inDrosophilaand a link between TAD reorganisation and subsequent changes in gene expression.


2018 ◽  
Vol 218 (1) ◽  
pp. 12-26 ◽  
Author(s):  
Marit W. Vermunt ◽  
Di Zhang ◽  
Gerd A. Blobel

Imaging studies, high-resolution chromatin conformation maps, and genome-wide occupancy data of architectural proteins have revealed that genome topology is tightly intertwined with gene expression. Cross-talk between gene-regulatory elements is often organized within insulated neighborhoods, and regulatory cues that induce transcriptional changes can reshape chromatin folding patterns and gene positioning within the nucleus. The cause–consequence relationship of genome architecture and gene expression is intricate, and its molecular mechanisms are under intense investigation. Here, we review the interdependency of transcription and genome organization with emphasis on enhancer–promoter contacts in gene regulation.


Author(s):  
Gat Krieger ◽  
Offir Lupo ◽  
Avraham A. Levy ◽  
Naama Barkai

AbstractChanges in gene expression drive novel phenotypes, raising interest in how gene expression evolves. In contrast to the static genome, cells regulate gene expression to accommodate changing conditions. Previous comparative studies focused on specific conditions, describing inter-species variation in expression levels, but providing limited information about variations in gene regulation. To close this gap, we profiled gene expression of related yeast species in hundreds of conditions, and used co-expression analysis to distinguish variations in transcription regulation from variations in expression levels or environmental perception. The majority of genes whose expression varied between the species maintained a conserved transcriptional regulation. Profiling the interspecific hybrid provided insights into the basis of variations, showed that trans-varying alleles interact dominantly, and revealed complementation of cis-variations by variations in trans. Our data suggests that gene expression diverges primarily through changes in promoter strength that do not alter gene positioning within the transcription network.


2020 ◽  
Author(s):  
Stephane Deschamps ◽  
John A Crow ◽  
Nadia Chaidir ◽  
Brooke Peterson-Burch ◽  
Sunil Kumar ◽  
...  

Abstract Background Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. Results Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with transcriptional activity. Chromatin loops, made of two “anchors” flanking a loop “interior”, overlap with up to 90% of high-resolution interaction domains from a previous public maize interactome dataset. A majority of all anchors are shared between multiple loops, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analysis indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Up to 63% of all unique variants derived from a prior public maize eQTL datasets overlap with Hi-C loop anchors. Anchor annotation suggests that <7% of all loops detected from one Hi-C library are potentially devoid of any genes or regulatory elements. The overall conservation and organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. Conclusions A majority of expressed genes and open chromatin regions co-locate with a conserved set of chromatin loop anchors. The results presented here will be a useful reference to further investigate the function of chromatin loop anchors and of the formation of interaction regions in the regulation of gene expression in maize.


2018 ◽  
Vol 218 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Philipp G. Maass ◽  
A. Rasim Barutcu ◽  
John L. Rinn

Nuclei require a precise three- and four-dimensional organization of DNA to establish cell-specific gene-expression programs. Underscoring the importance of DNA topology, alterations to the nuclear architecture can perturb gene expression and result in disease states. More recently, it has become clear that not only intrachromosomal interactions, but also interchromosomal interactions, a less studied feature of chromosomes, are required for proper physiological gene-expression programs. Here, we review recent studies with emerging insights into where and why cross-chromosomal communication is relevant. Specifically, we discuss how long noncoding RNAs (lncRNAs) and three-dimensional gene positioning are involved in genome organization and how low-throughput (live-cell imaging) and high-throughput (Hi-C and SPRITE) techniques contribute to understand the fundamental properties of interchromosomal interactions.


Sign in / Sign up

Export Citation Format

Share Document