Demonstration of Half-Metallicity in Fermi-Level-Tuned Heusler AlloyCo2FeAl0.5Si0.5at Room Temperature

2009 ◽  
Vol 102 (24) ◽  
Author(s):  
R. Shan ◽  
H. Sukegawa ◽  
W. H. Wang ◽  
M. Kodzuka ◽  
T. Furubayashi ◽  
...  
2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Jian Xu ◽  
Changsong Xu ◽  
Jian-Bo Liu ◽  
Laurent Bellaiche ◽  
Hongjun Xiang ◽  
...  

AbstractHalf-metallic ferromagnets (HMFs) that possess intriguing physical properties with completely spin-polarized current are key candidates for high-efficiency spintronic devices. However, HMFs that could simultaneously have high Curie temperature (Tc), wide half-metallic gap (ΔHM), and large bulk magnetocrystalline anisotropy energy (MAE) are very rare, which significantly restrict their room-temperature (RT) applications. In this article, through materials screening in layered halide double perovskites (LHDPs), we have theoretically identified that Cs4FePb2Cl12, which has good crystallographic, dynamic and thermal stabilities, possesses an intrinsic half-metallic ground-state with a high Tc ~ 450 K. Interestingly, the long-range ferromagnetic ordering in bulk Cs4FePb2Cl12 is contributed by the strong super-superexchange interactions between the neighboring Fe d orbitals mediated by different anionic Cl p orbitals. The high Tc of layered Cs4FePb2Cl12 can be well maintained even in the monolayer limitation, i.e., Tc ~ 370 K for Cs4FePb2Cl12 monolayer, which is critical for nanoscale device applications. Moreover, both bulk and monolayer Cs4FePb2Cl12 can exhibit wide ΔHM ~ 0.55 eV and large MAE >320 μeV/Fe, comparable to that of the best HMFs reported in the literature. Our findings can significantly extend the potentials of LHDPs for high-temperature spintronic applications.


2013 ◽  
Vol 477-478 ◽  
pp. 1303-1306
Author(s):  
Qin Xiang Gao

Using the first-principles calculations within the density functional theory (DFT), we have investigated the structure, magnetism and half-metallic stability of Co2FeGa Heusler compound under pressure from 0 to 50GPa. The results revel that the lattice constant is gradually shrank and total magnetic moment in per unit slightly decreased with increasing pressure, respectively. Moreover, with the increase of the pressure, the Fermi level will move towards high-energy orientation. When the pressure reaches at 30GPa the most stable half-metallicity is observed which the Fermi level is located at the middle of the spin-minority gap.


2004 ◽  
Vol 834 ◽  
Author(s):  
Mason J. Reed ◽  
M. Oliver Luen ◽  
Meredith L. Reed ◽  
Salah M. Bedair ◽  
Fevzi Erdem Arkun ◽  
...  

ABSTRACTThe magnetic properties of GaMnN, grown by metalorganic chemical vapor deposition, depend on the addition of dopants; where undoped materials are ferromagnetic, and n -type (Si-doped) and p -type (Mg-doped) films are either ferromagnetic or paramagnetic depending on dopant concentration. The ferromagnetism of this material system seems correlated to Fermi level position, and is observed only when the Fermi level is within or close to the Mn energy band. This allows ferromagnetism-mediating carriers to be present in the Mn energy band. The current results exclude precipitates or clusters as the origin of room temperature ferromagnetism in GaMnN.


2012 ◽  
Vol 100 (9) ◽  
pp. 092110 ◽  
Author(s):  
Z. Q. Liu ◽  
W. K. Chim ◽  
S. Y. Chiam ◽  
J. S. Pan ◽  
C. M. Ng

2019 ◽  
Vol 9 (4) ◽  
pp. 620 ◽  
Author(s):  
Ying Chen ◽  
Shaobo Chen ◽  
Bin Wang ◽  
Bo Wu ◽  
Haishen Huang ◽  
...  

The effects of doping on the electronic and magnetic properties of the quaternary Heusler alloy TiZrCoIn were investigated by first-principles calculations. Results showed that the appearance of half-metallicity and negative formation energies are associated in all of the TiZrCoIn1−xGex compounds, indicating that Ge doping at Z-site increases the stability without damaging the half-metallicity of the compounds. Formation energy gradually decreased with doping concentration, and the width of the spin-down gap increased with a change in Fermi level. TiZrCoIn0.25Ge0.75 was found to be the most stable half-metal. Its Fermi level was in the middle of the broadened gap, and a peak at the Fermi level was detected in the spin majority channel of the compound. The large gaps of the compounds were primarily dominated by the intense d-d hybridization between Ti, Zr, and Co. The substitution of In by Ge increased the number of sp valence electrons in the system and thereby enhanced RKKY exchange interaction and increased splitting. Moreover, the total spin magnetic moments of the doped compounds followed the Slater–Pauling rule of Mt = Zt − 18 and increased from 2 μB to 3 μB linearly with concentration.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 39 ◽  
Author(s):  
Xiaoyong He ◽  
Fangting Lin ◽  
Feng Liu ◽  
Hao Zhang

The influences of different kinds of phonon scatterings (i.e., acoustic (AC) phonon, impurity, and longitudinal optical (LO) phonon scatterings) on the tunable propagation properties of graphene metamaterials structures have been investigated, also including the effects of graphene pattern structures, Fermi levels, and operation frequencies. The results manifested that, at room temperature, AC phonon scattering dominated, while with the increase in temperature, the LO phonon scattering increased significantly and played a dominate role if temperature goes beyond 600 K. Due to the phonon scatterings, the resonant properties of the graphene metamaterial structure indicated an optimum value (about 0.5–0.8 eV) with the increase in Fermi level, which were different from the existing results. The results are very helpful to understand the tunable mechanisms of graphene functional devices, sensors, modulators, and antennas.


2015 ◽  
Vol 160 ◽  
pp. 440-446 ◽  
Author(s):  
Muhammad Saeed Akhtar ◽  
Mohammad Azad Malik ◽  
Saira Riaz ◽  
Shahzad Naseem

Sign in / Sign up

Export Citation Format

Share Document