scholarly journals Non-Photochemical Quenching. A Response to Excess Light Energy

2001 ◽  
Vol 125 (4) ◽  
pp. 1558-1566 ◽  
Author(s):  
Patricia Müller ◽  
Xiao-Ping Li ◽  
Krishna K. Niyogi
Author(s):  
Yuki Takahashi ◽  
Shinya Wada ◽  
Ko Noguchi ◽  
Chikahiro Miyake ◽  
Amane Makino ◽  
...  

Abstract Although N levels affect leaf photosynthetic capacity, the effects of N levels on the photochemistry of photosystems II and I (PSII and PSI, respectively) are not well-understood. In the present study, we examined this aspect in rice (Oryza sativa L. ‘Hitomebore’) plants grown under three different N levels at normal or high temperature that can occur during rice culture and does not severely suppress photosynthesis. At both growth temperatures, the quantum efficiency of PSII [Y(II)] and the fraction of the primary quinone electron acceptor in its oxidized state were positively correlated with the amount of total leaf-N, whereas the quantum yields of non-photochemical quenching and donor-side limitation of PSI [Y(ND)] were negatively correlated with the amount of total leaf-N. These changes in PSII and PSI parameters were strongly correlated with each other. Growth temperatures scarcely affected these relationships. These results suggest that the photochemistry of PSII and PSI is coordinately regulated primarily depending on the amount of total leaf-N. When excess light energy occurs in low-N acclimated plants, oxidation of the reaction center chlorophyll of PSI is thought to be stimulated to protect PSI from excess light energy. It is also suggested that PSII and PSI normally operate at high temperature used in the present study. In addition, as the relationships between Y(II) and Y(ND) were found to be almost identical to those observed in osmotically stressed rice plants, common regulation is thought to be operative when excess light energy occurs due to different causes.


2016 ◽  
Vol 43 (5) ◽  
pp. 448 ◽  
Author(s):  
Xiao-Ping Yi ◽  
Ya-Li Zhang ◽  
He-Sheng Yao ◽  
Hong-Hai Luo ◽  
Ling Gou ◽  
...  

To better understand the adaptation mechanisms of the photosynthetic apparatus of cotton plants to water deficit conditions, the influence of water deficit on photosynthesis, chlorophyll a fluorescence and the activities of antioxidant systems were determined simultaneously in Gossypium hirsutum L. cv. Xinluzao 45 (upland cotton) and Gossypium barbadense L. cv. Xinhai 21 (pima cotton). Water deficit decreased photosynthesis in both cotton species, but did not decrease chlorophyll content or induce any sustained photoinhibition in either cotton species. Water deficit increased ETR/4 − AG, where ETR/4 estimates the linear photosynthetic electron flux and AG is the gross rate of carbon assimilation. The increase in ETR/4 − AG, which represents an increase in photorespiration and alternative electron fluxes, was particularly pronounced in Xinluzao 45. In Xinluzao 45, water deficit increased the activities of antioxidative enzymes, as well as the contents of reactive oxygen species (ROS), which are related to the Mehler reaction. In contrast, moderate water deficit particularly increased non-photochemical quenching (NPQ) in Xinhai 21. Our results suggest that Xinluzao 45 relied on enhanced electron transport such as photorespiration and the Mehler reaction to dissipate excess light energy under mild and moderate water deficit. Xinhai 21 used enhanced photorespiration for light energy utilisation under mild water deficit but, when subjected to moderate water deficit, possessed a high capacity for dissipating excess light energy via heat dissipation.


1997 ◽  
Vol 24 (1) ◽  
pp. 17 ◽  
Author(s):  
Jenny R. Watling ◽  
Sharon A. Robinson ◽  
Ian E. Woodrow ◽  
C. Barry Osmond

Responses of Alocasia macrorrhiza (L.) G. Don, Castanospora alphandii (F. Muell.) F. Muell. and Alpinia hylandii R. Smith, growing in a tropical rainforest understorey, to excess light during sunflecks were investigated using chlorophyll fluorescence techniques and by analysing xanthophyll cycle activity. A fourth species, the pioneerOmalanthus novo-guineensis (Warb.) Schum., growing in a small gap, was also studied. In all three understorey species there were large and rapid decreases in the proportion of open Photosystem II (PSII) centres, as indicated by qP, on illumination with saturating light and a concurrent increase in non-photochemical quenching. qP remained low (< 0.4) throughout the period of illumination (~15 min), although it did increase gradually, probably reflecting photosynthetic induction. Sustained declines (up to 120 min) in quantum yield, indicated by Fv/Fm, occurred in all three understorey species following exposure to saturating Photon flux density (PFD) during sunflecks. When ?PSII was monitored during sunflecks it was found to be very sensitive to changes in PFD, declining rapidly with even modest rises in the latter. There was rapid and continuing net conversion of violaxanthin (V) to antheraxanthin plus zeaxanthin (A+Z) on exposure of A. macrorrhiza and C. alphandii to saturating sunflecks. On returning to low light A. macrorrhiza retained its high levels of A+Z for up to 60 min, while C. alphandii rapidly converted back to V. O. novo- guineensis responded to high light by changing its leaf angle to reduce interception and showed no indication of photoinhibition during or after exposure.


2019 ◽  
Vol 60 (12) ◽  
pp. 2660-2671 ◽  
Author(s):  
Kyohei Harada ◽  
Takatoshi Arizono ◽  
Ryoichi Sato ◽  
Mai Duy Luu Trinh ◽  
Akira Hashimoto ◽  
...  

Abstract Plants convert solar energy into chemical energy through photosynthesis, which supports almost all life activities on earth. Because the intensity and quality of sunlight can change dramatically throughout the day, various regulatory mechanisms help plants adjust their photosynthetic output accordingly, including the regulation of light energy accumulation to prevent the generation of damaging reactive oxygen species. Non-photochemical quenching (NPQ) is a regulatory mechanism that dissipates excess light energy, but how it is regulated is not fully elucidated. In this study, we report a new NPQ-regulatory protein named Day-Length-dependent Delayed-Greening1 (DLDG1). The Arabidopsis DLDG1 associates with the chloroplast envelope membrane, and the dldg1 mutant had a large NPQ value compared with wild type. The mutant also had a pale-green phenotype in developing leaves but only under continuous light; this phenotype was not observed when dldg1 was cultured in the dark for ≥8 h/d. DLDG1 is a homolog of the plasma membrane-localizing cyanobacterial proton-extrusion-protein A that is required for light-induced H+ extrusion and also shows similarity in its amino-acid sequence to that of Ycf10 encoded in the plastid genome. Arabidopsis DLDG1 enhances the growth-retardation phenotype of the Escherichia coli K+/H+ antiporter mutant, and the everted membrane vesicles of the E. coli expressing DLDG1 show the K+/H+ antiport activity. Our findings suggest that DLDG1 functionally interacts with Ycf10 to control H+ homeostasis in chloroplasts, which is important for the light-acclimation response, by optimizing the extent of NPQ.


2021 ◽  
Vol 53 (5) ◽  
pp. 409-414
Author(s):  
Richard P. Beckett ◽  
Farida V. Minibayeva ◽  
Kwanele W. G. Mkhize

AbstractNon-photochemical quenching (NPQ) plays an important role in protecting photosynthetic organisms from photoinhibition by dissipating excess light energy as heat. However, excess NPQ can greatly reduce the quantum yield of photosynthesis at lower light levels. Recently, there has been considerable interest in understanding how plants balance NPQ to ensure optimal productivity in environments in which light levels are rapidly changing. In the present study, chlorophyll fluorescence was used to study the induction and relaxation of non-photochemical quenching (NPQ) in the dark and the induction of photosynthesis in ten species of lichens, five sampled from exposed and five sampled from shaded habitats. Here we show that the main difference between sun and shade lichens is the rate at which NPQ relaxes in the dark, rather than the speed that photosynthesis starts upon illumination. During the first two minutes in the dark, NPQ values in the five sun species declined only by an average of 2%, while by contrast, in shade species the average decline was 40%. For lichens growing in microhabitats where light levels are rapidly changing, rapid relaxation of NPQ may enable their photobionts to use the available light most efficiently.


2016 ◽  
Vol 39 (4) ◽  
pp. 804-822 ◽  
Author(s):  
Belén Naranjo ◽  
Clara Mignée ◽  
Anja Krieger-Liszkay ◽  
Dámaso Hornero-Méndez ◽  
Lourdes Gallardo-Guerrero ◽  
...  

2021 ◽  
Author(s):  
Petra Redekop ◽  
Emanuel Sanz-Luque ◽  
Yizhong Yuan ◽  
Gaelle Villain ◽  
Dimitris Petroutsos ◽  
...  

In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce non-photochemical quenching to avoid photo-damage and trigger expression of photoprotective genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, wavelength, photosynthetic electron transport and CO2 on induction of the photoprotective genes (LHCSR1, LHCSR3 and PSBS) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity, was independently modulated by blue and UV-B radiation through specific photoreceptors, and only LHCSR3 was strongly controlled by CO2 levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Atsuko Kanazawa ◽  
Abhijnan Chattopadhyay ◽  
Sebastian Kuhlgert ◽  
Hainite Tuitupou ◽  
Tapabrata Maiti ◽  
...  

The responses of plant photosynthesis to rapid fluctuations in environmental conditions are critical for efficient conversion of light energy. These responses are not well-seen laboratory conditions and are difficult to probe in field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint ( Mentha sp.), we show that ‘light potentials’ for linear electron flow and non-photochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient photosynthetically active radiation (PAR) or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly induced NPQ to photosynthetic control of electron flow at the cytochrome b 6 f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, probably inducing photodamage, revealing a potential target for improving the efficiency and robustness of photosynthesis. We discuss the implications of the approach for open science efforts to understand and improve crop productivity.


2016 ◽  
Vol 43 (6) ◽  
pp. 479 ◽  
Author(s):  
Jun-Wen Chen ◽  
Shuang-Bian Kuang ◽  
Guang-Qiang Long ◽  
Sheng-Chao Yang ◽  
Zhen-Gui Meng ◽  
...  

Partitioning of light energy into several pathways and its relation to photosynthesis were examined in a shade-demanding species Panax notoginseng (Burkill) F.H.Chen ex C.Y.Wu & K.M.Feng grown along a light gradient. In fully light-induced leaves, the actual efficiency of PSII photochemistry (ΔF/Fmʹ), electron transport rate (ETR), non-photochemical quenching (NPQ) and photochemical quenching (qP) were lower in low-light-grown plants; this was also the case in fully dark-adapted leaves under a simulated sunfleck. In response to varied light intensity, high-light-grown plants showed greater quantum yields of light-dependent non-photochemical quenching (ΦNPQ) and PSII photochemistry (ΦPSII) and smaller quantum yields of fluorescence and constitutive thermal dissipation (Φf,d). Under the simulated sunfleck, high-light-grown plants showed greater ΦPSII and smaller Φf,d. There were positive relationships between net photosynthesis (Anet) and ΦNPQ+f,d and negative relationships between Anet and ΦPSII in fully light-induced leaves; negative correlations of Anet with ΦNPQ+f,d and positive correlations of Anet with ΦPSII were observed in fully dark-adapted leaves. In addition, more nitrogen was partitioned to light-harvesting components in low-light-grown plants, whereas leaf morphology and anatomy facilitate reducing light capture in high-light-grown plants. The pool of xanthophyll pigments and the de-epoxidation state was greater in high-light-grown plants. Antioxidant defence was elevated by increased growth irradiance. Overall, the evidences from P. notoginseng suggest that in high-light-grown shade-demanding plants irradiated by high light more electrons were consumed by non-net carboxylative processes that activate the component of NPQ, that low-light-grown plants correspondingly protect the photosynthetic apparatus against photodamage by reducing the efficiency of PSII photochemistry under high light illumination, and that during the photosynthetic induction, the ΔpH-dependent (qE) component of NPQ might dominate photoprotection, but the NPQ also depresses the enhancement of photosynthesis via competition for light energy.


Climate ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 79 ◽  
Author(s):  
Mitsutoshi Kitao ◽  
Hiroyuki Tobita ◽  
Satoshi Kitaoka ◽  
Hisanori Harayama ◽  
Kenichi Yazaki ◽  
...  

Understanding plant response to excessive light energy not consumed by photosynthesis under various environmental stresses, would be important for maintaining biosphere sustainability. Based on previous studies regarding nitrogen (N) limitation, drought in Japanese white birch (Betula platyphylla var. japonica), and elevated O3 in Japanese oak (Quercus mongolica var. crispula) and Konara oak (Q. serrata) under future-coming elevated CO2 concentrations, we newly analyze the fate of absorbed light energy by a leaf, partitioning into photochemical processes, including photosynthesis, photorespiration and regulated and non-regulated, non-photochemical quenchings. No significant increases in the rate of non-regulated non-photochemical quenching (JNO) were observed in plants grown under N limitation, drought and elevated O3 in ambient or elevated CO2. This suggests that the risk of photodamage caused by excessive light energy was not increased by environmental stresses reducing photosynthesis, irrespective of CO2 concentrations. The rate of regulated non-photochemical quenching (JNPQ), which contributes to regulating photoprotective thermal dissipation, could well compensate decreases in the photosynthetic electron transport rate through photosystem II (JPSII) under various environmental stresses, since JNPQ+JPSII was constant across the treatment combinations. It is noteworthy that even decreases in JNO were observed under N limitation and elevated O3, irrespective of CO2 conditions, which may denote a preconditioning-mode adaptive response for protection against further stress. Such an adaptive response may not fully compensate for the negative effects of lethal stress, but may be critical for coping with non-lethal stress and regulating homeostasis. Regarding the three deciduous broadleaf tree species, elevated CO2 appears not to influence the plant responses to environmental stresses from the viewpoint of susceptibility to photodamage.


Sign in / Sign up

Export Citation Format

Share Document