scholarly journals Diffusion Limitation of Oxygen Uptake and Nitrogenase Activity in the Root Nodules of Parasponia rigida Merr. and Perry

1982 ◽  
Vol 69 (3) ◽  
pp. 728-733 ◽  
Author(s):  
John D. Tjepkema ◽  
Robert J. Cartica
1983 ◽  
Vol 13 (5) ◽  
pp. 921-928 ◽  
Author(s):  
Te May Ching ◽  
Philip A. Monaco ◽  
Kim K. Ching

Anaerobically isolated endophytic vesicle clusters from root nodules of Alnusrubra Bong. were low in cellular energy charge (0.4 to 0.5), total adenylate pool (0.4 to 0.9 nmolùmg protein−1), and nitrogenase activity (0.1 to 0.3 nmolùmg protein−1). Upon addition of substrate (glucose, sucrose, isocitrate + isocitrate dehydrogenase + NADP), energy charge decreased by 2 to 20%, total adenylate pool increased by 3- to 11-fold, and nitrogenase activity increased by 50 to 500%. Only ATP and dithionite supported substantial nitrogenase activity and greatly elevated energy status. Treating vesicle clusters with macerase and cellulase to remove the host capsule facilitated substrate and oxygen uptake, resulting in a 240% increase in total adenylate pool, a 60% increase in energy charge, and a 730% increase in nitrogenase activity. Isolated vesicle clusters contained about 320 nmol cytochromes•g protein−1, with an average molar distribution of 17% cytochrome a-a3, 39% b, 22% c, and 21% o. No cytochrome P 450 was observed in vesicle clusters. The presence of cytochromes a-a3 and o may be a mechanism of oxygen tolerance whereby the nitrogenase in Frankia spp. can operate in an environment without the protection of leghaemoglobin.


1978 ◽  
Vol 56 (11) ◽  
pp. 1365-1371 ◽  
Author(s):  
John Tjepkema

Nitrogenase activity (acetylene reduction) and oxygen uptake by root nodules of Myrica gale L. were measured before and after removal of nodule roots. There was no significant effect of nodule root removal when respiration was measured in the gas phase (0.05–0.2 atm pO2 (1 atm = 101.325 kPa)) or acetylene reduction in a stirred aqueous phase at 0.2 atm pO2. However, when acetylene reduction was measured in 0.05 atm pO2 in an unstirred aqueous phase, there was a 66 to 76% reduction in activity. These results indicate that nodule roots are important for oxygen uptake when the nodules are present in an aqueous phase at low pO2, which is probably the normal environmental conditions for many of the nodules. Other measurements showed that diffusion of oxygen from the shoot to the root nodules is not important for nitrogen fixation. These measurements were done on whole plants with the shoots in air (0.20 atm pO2) and the roots in water at the desired pO2 value. With 0.0 atmpO2 in the root environment, the rate of acetylene reduction was only 4% of the rate at 0.2 atmpO2. Thus, only small amounts of oxygen are transported from the shoot to the nodules.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 952
Author(s):  
Paula Bellés-Sancho ◽  
Martina Lardi ◽  
Yilei Liu ◽  
Sebastian Hug ◽  
Marta Adriana Pinto-Carbó ◽  
...  

Homocitrate is an essential component of the iron-molybdenum cofactor of nitrogenase, the bacterial enzyme that catalyzes the reduction of dinitrogen (N2) to ammonia. In nitrogen-fixing and nodulating alpha-rhizobia, homocitrate is usually provided to bacteroids in root nodules by their plant host. In contrast, non-nodulating free-living diazotrophs encode the homocitrate synthase (NifV) and reduce N2 in nitrogen-limiting free-living conditions. Paraburkholderia phymatum STM815 is a beta-rhizobial strain, which can enter symbiosis with a broad range of legumes, including papilionoids and mimosoids. In contrast to most alpha-rhizobia, which lack nifV, P. phymatum harbors a copy of nifV on its symbiotic plasmid. We show here that P. phymatum nifV is essential for nitrogenase activity both in root nodules of papilionoid plants and in free-living growth conditions. Notably, nifV was dispensable in nodules of Mimosa pudica despite the fact that the gene was highly expressed during symbiosis with all tested papilionoid and mimosoid plants. A metabolome analysis of papilionoid and mimosoid root nodules infected with the P. phymatum wild-type strain revealed that among the approximately 400 measured metabolites, homocitrate and other metabolites involved in lysine biosynthesis and degradation have accumulated in all plant nodules compared to uninfected roots, suggesting an important role of these metabolites during symbiosis.


1983 ◽  
Vol 34 (8) ◽  
pp. 951-963 ◽  
Author(s):  
J. F. WITTY ◽  
F. R. MINCHIN ◽  
J. E. SHEEHY

1983 ◽  
Vol 61 (11) ◽  
pp. 2937-2942 ◽  
Author(s):  
Christa R. Schwintzer ◽  
John D. Tjepkema

Annual CO2 evolution, H2 evolution, and C2H2 reduction were measured in root nodules from a vigorous Myrica gale stand in a Massachusetts peatland at 3-week intervals in 1980. Nodule activity was approximately the same under the experimental conditions (excised nodules reducing C2H2) as in nature (attached nodules reducing N2) and the CO2 evolution to O2 uptake ratio averaged 1.07. Nitrogenase activity was first detectable in late May, reached its maximum [Formula: see text] in mid-July, and disappeared in late October. The seasonal pattern of CO2 evolution was similar except that it continued at low rates when nitrogenase activity was absent. Hydrogen evolution was barely detectable. The energy cost of nitrogen fixation, expressed as the molar CO2:C2H4 ratio, was relatively low [Formula: see text] throughout the period of substantial nitrogenase activity and had a mean annual value of 4.9. Annual N2 fixation was estimated to be 2.8 g N m−2year−1, contributing about 33% of the annual N requirement measured in 1979. Annual C use by nodules was about 21.0 g C m−2 year−1. If this C were available for additional net production, it would increase it by about 5.5%.


1980 ◽  
Vol 26 (9) ◽  
pp. 1072-1089 ◽  
Author(s):  
Dwight Baker ◽  
William Newcomb ◽  
John G. Torrey

The actinomycete, Frankia sp. EuI1, isolated from root nodules of Elaeagnus umbellata is an infective endophyte but which lacks the ability to form an effective nitrogen-fixing symbiosis with its host. This ineffective organism can be distinguished easily from other frankiae, in vitro, on the basis of size, morphology, and the elaboration of a diffusible pigment. Cross-inoculation studies indicated that the host range of this symbiont is narrow and probably restricted to the Elaeagnaceae. In all cases of nodulation the symbiosis never developed nitrogenase activity and the microsymbiont never produced endophytic vesicles within the infected host cells. Sporangia were produced in vivo and in vitro so the morphogenetic block is apparently restricted to vesicle formation.


1995 ◽  
Vol 50 (7-8) ◽  
pp. 543-551
Author(s):  
Bernhard Epping ◽  
Alexander P. Hansen ◽  
Peter Martin

Abstract Nodules of Rhizobium leguminosarum bv. phaseoli in symbiosis with Phaseolus vulgaris were compared with regard to their nitrogenase activity and activities of enzymes involved in the removal of O2·- and H2O2 as well as total ascorbate content. Activities of catalase (EC 1.11.1.6), ascorbate peroxidase (EC 1.11.1.11), and total ascorbate content were consist­ently higher in nodules inhabited by bacterial strains with higher nitrogenase activity. Values for superoxide dismutase (EC 1.15.11), and guaiacol peroxidase activity did not differ for the bacterial strains compared. On the other hand, when different plant cultivars were inoculated with the same bacterial strain, high nitrogenase activity did not correlate with a higher activ­ity of the oxygen scavenging enzyms or a higher content of total ascorbate. In this case, values for guaiacol peroxidase activity were greatly enhanced in nodules with lower nitrogen­ ase activity. This may be part of a hypersensitive reaction of the plant cultivar against the bacterial symbiotic partner. Inhibition of catalase activity in the nodules by addition of triazole to the nutrient solution did not alter nitrogenase activity within the first nine hours after addition. It can be concluded that the activity of catalase, ascorbate peroxidase, and superoxide dismutase is not generally coupled to nitrogenase activity in root nodules of P. vulgaris.


Sign in / Sign up

Export Citation Format

Share Document