scholarly journals A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in Arabidopsis

2012 ◽  
Vol 24 (5) ◽  
pp. 2184-2199 ◽  
Author(s):  
Zheng-Yi Xu ◽  
Kwang Hee Lee ◽  
Ting Dong ◽  
Jae Cheol Jeong ◽  
Jing Bo Jin ◽  
...  
2006 ◽  
Vol 142 (3) ◽  
pp. 1113-1126 ◽  
Author(s):  
Abel Rosado ◽  
Arnaldo L. Schapire ◽  
Ray A. Bressan ◽  
Antoine L. Harfouche ◽  
Paul M. Hasegawa ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhiwei Chen ◽  
Longhua Zhou ◽  
Panpan Jiang ◽  
Ruiju Lu ◽  
Nigel G. Halford ◽  
...  

Abstract Background Sucrose nonfermenting-1 (SNF1)-related protein kinases (SnRKs) play important roles in regulating metabolism and stress responses in plants, providing a conduit for crosstalk between metabolic and stress signalling, in some cases involving the stress hormone, abscisic acid (ABA). The burgeoning and divergence of the plant gene family has led to the evolution of three subfamilies, SnRK1, SnRK2 and SnRK3, of which SnRK2 and SnRK3 are unique to plants. Therefore, the study of SnRKs in crops may lead to the development of strategies for breeding crop varieties that are more resilient under stress conditions. In the present study, we describe the SnRK gene family of barley (Hordeum vulgare), the widespread cultivation of which can be attributed to its good adaptation to different environments. Results The barley HvSnRK gene family was elucidated in its entirety from publicly-available genome data and found to comprise 50 genes. Phylogenetic analyses assigned six of the genes to the HvSnRK1 subfamily, 10 to HvSnRK2 and 34 to HvSnRK3. The search was validated by applying it to Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) genome data, identifying 50 SnRK genes in rice (four OsSnRK1, 11 OsSnRK2 and 35 OsSnRK3) and 39 in Arabidopsis (three AtSnRK1, 10 AtSnRK2 and 26 AtSnRK3). Specific motifs were identified in the encoded barley proteins, and multiple putative regulatory elements were found in the gene promoters, with light-regulated elements (LRE), ABA response elements (ABRE) and methyl jasmonate response elements (MeJa) the most common. RNA-seq analysis showed that many of the HvSnRK genes responded to ABA, some positively, some negatively and some with complex time-dependent responses. Conclusions The barley HvSnRK gene family is large, comprising 50 members, subdivided into HvSnRK1 (6 members), HvSnRK2 (10 members) and HvSnRK3 (34 members), showing differential positive and negative responses to ABA.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 435
Author(s):  
Agnieszka Ludwiczak ◽  
Monika Osiak ◽  
Stefany Cárdenas-Pérez ◽  
Sandra Lubińska-Mielińska ◽  
Agnieszka Piernik

Salinization is a key soil degradation process. An estimated 20% of total cultivated lands and 33% of irrigated agricultural lands worldwide are affected by high salinity. Much research has investigated the influence of salt (mainly NaCl) on plants, but very little is known about how this is related to natural salinity and osmotic stress. Therefore, our study was conducted to determine the osmotic and ionic salt stress responses of selected C3 and C4 cultivated plants. We focused on the early growth stages as those critical for plant development. We applied natural brine to simulate natural salinity and to compare its effect to NaCl solution. We assessed traits related to germination ability, seedlings and plantlet morphology, growth indexes, and biomass and water accumulation. Our results demonstrate that the effects of salinity on growth are strongest among plantlets. Salinity most affected water absorption in C3 plants (28% of total traits variation), but plant length in C4 plants (17–27%). Compensatory effect of ions from brine were suggested by the higher model plants’ growth success of ca 5–7% under brine compared to the NaCl condition. However, trait differences indicated that osmotic stress was the main stress factor affecting the studied plants.


2017 ◽  
Vol 61 (4) ◽  
pp. 611-621 ◽  
Author(s):  
G. Y. Yang ◽  
W. H. Zhang ◽  
Y. D. Sun ◽  
T. T. Zhang ◽  
D. Hu ◽  
...  

Rice Science ◽  
2017 ◽  
Vol 24 (5) ◽  
pp. 253-263 ◽  
Author(s):  
Simon Swapna ◽  
Korukkanvilakath Samban Shylaraj

Plant Science ◽  
1995 ◽  
Vol 110 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Hagit Amitai-Zeigerson ◽  
Pablo A. Scolnik ◽  
Dudy Bar-Zvi

2016 ◽  
Vol 67 (21) ◽  
pp. 5961-5973 ◽  
Author(s):  
Mathilde Royer ◽  
David Cohen ◽  
Nathalie Aubry ◽  
Vera Vendramin ◽  
Simone Scalabrin ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 304 ◽  
Author(s):  
Alexander Hofmann ◽  
Sophia Müller ◽  
Thomas Drechsler ◽  
Mareike Berleth ◽  
Katharina Caesar ◽  
...  

Plants employ a number of phosphorylation cascades in response to a wide range of environmental stimuli. Previous studies in Arabidopsis and yeast indicate that histidine kinase AHK1 is a positive regulator of drought and osmotic stress responses. Based on these studies AHK1 was proposed a plant osmosensor, although the molecular basis of plant osmosensing still remains unknown. To understand the molecular role and signaling mechanism of AHK1 in osmotic stress, we have expressed and purified full-length AHK1 from Arabidopsis in a bacterial host to allow for studies on the isolated transmembrane receptor. Purification of the recombinant protein solubilized from the host membranes was achieved in a single step by metal-affinity chromatography. Analysis of the purified AHK1 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting show a single band indicating that the preparation is highly pure and devoid of contaminants or degradation products. In addition, gel filtration experiments indicate that the preparation is homogenous and monodisperse. Finally, CD-spectroscopy, phosphorylation activity, dimerization studies, and protein–protein interaction with plant phosphorylation targeting AHP2 demonstrate that the purified protein is functionally folded and acts as phospho-His or phospho-Asp phosphatase. Hence, the expression and purification of recombinant AHK1 reported here provide a basis for further detailed functional and structural studies of the receptor, which might help to understand plant osmosensing and osmosignaling on the molecular level.


Sign in / Sign up

Export Citation Format

Share Document