scholarly journals NAC Transcription Factor SPEEDY HYPONASTIC GROWTH Regulates Flooding-Induced Leaf Movement in Arabidopsis

2013 ◽  
Vol 25 (12) ◽  
pp. 4941-4955 ◽  
Author(s):  
Mamoona Rauf ◽  
Muhammad Arif ◽  
Joachim Fisahn ◽  
Gang-Ping Xue ◽  
Salma Balazadeh ◽  
...  
2021 ◽  
Vol 22 (13) ◽  
pp. 6952
Author(s):  
Mingxin Yu ◽  
Junling Liu ◽  
Bingshuai Du ◽  
Mengjuan Zhang ◽  
Aibin Wang ◽  
...  

NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes’ activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein—ABRE Binding Factor3 (ABF3)—and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene—DREB2A—was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.


2016 ◽  
pp. erw380 ◽  
Author(s):  
Guadalupe Sosa-Valencia ◽  
Miguel Palomar ◽  
Alejandra A. Covarrubias ◽  
José L. Reyes

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaolong Lv ◽  
Shanrong Lan ◽  
Kateta Malangisha Guy ◽  
Jinghua Yang ◽  
Mingfang Zhang ◽  
...  

Planta ◽  
2017 ◽  
Vol 247 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Tingting Ren ◽  
Jiawei Wang ◽  
Mingming Zhao ◽  
Xiaoming Gong ◽  
Shuxia Wang ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 113-121 ◽  
Author(s):  
Nouf Owdah Alshareef ◽  
Jian You Wang ◽  
Shawkat Ali ◽  
Salim Al-Babili ◽  
Mark Tester ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0194326 ◽  
Author(s):  
Rong Jin ◽  
Qing-gang Zhu ◽  
Xin-yue Shen ◽  
Miao-miao Wang ◽  
Wajeeha Jamil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document