scholarly journals NAC Transcription Factor PwNAC11 Activates ERD1 by Interaction with ABF3 and DREB2A to Enhance Drought Tolerance in Transgenic Arabidopsis

2021 ◽  
Vol 22 (13) ◽  
pp. 6952
Author(s):  
Mingxin Yu ◽  
Junling Liu ◽  
Bingshuai Du ◽  
Mengjuan Zhang ◽  
Aibin Wang ◽  
...  

NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes’ activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein—ABRE Binding Factor3 (ABF3)—and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene—DREB2A—was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.

Author(s):  
Yang Xiang ◽  
Xiujuan Sun ◽  
Xiangli Bian ◽  
Tianhui Wei ◽  
Tong Han ◽  
...  

Abstract Drought stress severely limits the growth, development, and productivity of crops, and therefore understanding the mechanisms by which plants respond to drought is crucial. In this study, we cloned a maize NAC transcription factor, ZmNAC49, and identified its function in response to drought stress. We found that ZmNAC49 is localized in the nucleus and has transcriptional activation activity. ZmNAC49 expression is rapidly and strongly induced by drought stress, and overexpression enhances stress tolerance in maize. Overexpression also significant decreases the transpiration rate, stomatal conductance, and stomatal density in maize. Detailed study showed that ZmNAC49 overexpression affects the expression of genes related to stomatal development, namely ZmTMM, ZmSDD1, ZmMUTE, and ZmFAMA. In addition, we found that ZmNAC49 can directly bind to the promoter of ZmMUTE and suppress its expression. Taken together, our results show that the transcription factor ZmNAC49 represses ZmMUTE expression, reduces stomatal density, and thereby enhances drought tolerance in maize.


Plant Science ◽  
2020 ◽  
Vol 301 ◽  
pp. 110689
Author(s):  
Xing-Long Ji ◽  
Hong-Liang Li ◽  
Zhi-Wen Qiao ◽  
Jiu-Cheng Zhang ◽  
Wei-Jian Sun ◽  
...  

2018 ◽  
Vol 19 (9) ◽  
pp. 2580 ◽  
Author(s):  
Chang-Tao Wang ◽  
Jing-Na Ru ◽  
Yong-Wei Liu ◽  
Jun-Feng Yang ◽  
Meng Li ◽  
...  

Abiotic stresses restrict the growth and yield of crops. Plants have developed a number of regulatory mechanisms to respond to these stresses. WRKY transcription factors (TFs) are plant-specific transcription factors that play essential roles in multiple plant processes, including abiotic stress response. At present, little information regarding drought-related WRKY genes in maize is available. In this study, we identified a WRKY transcription factor gene from maize, named ZmWRKY40. ZmWRKY40 is a member of WRKY group II, localized in the nucleus of mesophyll protoplasts. Several stress-related transcriptional regulatory elements existed in the promoter region of ZmWRKY40. ZmWRKY40 was induced by drought, high salinity, high temperature, and abscisic acid (ABA). ZmWRKY40 could rapidly respond to drought with peak levels (more than 10-fold) at 1 h after treatment. Overexpression of ZmWRKY40 improved drought tolerance in transgenic Arabidopsis by regulating stress-related genes, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of peroxide dismutase (POD) and catalase (CAT) under drought stress. According to the results, the present study may provide a candidate gene involved in the drought stress response and a theoretical basis to understand the mechanisms of ZmWRKY40 in response to abiotic stresses in maize.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cuiling Yuan ◽  
Chunjuan Li ◽  
Xiaodong Lu ◽  
Xiaobo Zhao ◽  
Caixia Yan ◽  
...  

Abstract Background Peanut is one of the most important oil crop species worldwide. NAC transcription factor (TF) genes play important roles in the salt and drought stress responses of plants by activating or repressing target gene expression. However, little is known about NAC genes in peanut. Results We performed a genome-wide characterization of NAC genes from the diploid wild peanut species Arachis duranensis and Arachis ipaensis, which included analyses of chromosomal locations, gene structures, conserved motifs, expression patterns, and cis-acting elements within their promoter regions. In total, 81 and 79 NAC genes were identified from A. duranensis and A. ipaensis genomes. Phylogenetic analysis of peanut NACs along with their Arabidopsis and rice counterparts categorized these proteins into 18 distinct subgroups. Fifty-one orthologous gene pairs were identified, and 46 orthologues were found to be highly syntenic on the chromosomes of both A. duranensis and A. ipaensis. Comparative RNA sequencing (RNA-seq)-based analysis revealed that the expression of 43 NAC genes was up- or downregulated under salt stress and under drought stress. Among these genes, the expression of 17 genes in cultivated peanut (Arachis hypogaea) was up- or downregulated under both stresses. Moreover, quantitative reverse transcription PCR (RT-qPCR)-based analysis revealed that the expression of most of the randomly selected NAC genes tended to be consistent with the comparative RNA-seq results. Conclusion Our results facilitated the functional characterization of peanut NAC genes, and the genes involved in salt and drought stress responses identified in this study could be potential genes for peanut improvement.


Sign in / Sign up

Export Citation Format

Share Document