scholarly journals The U1 snRNP Subunit LUC7 Modulates Plant Development and Stress Responses via Regulation of Alternative Splicing

2018 ◽  
Vol 30 (11) ◽  
pp. 2838-2854 ◽  
Author(s):  
Marcella de Francisco Amorim ◽  
Eva-Maria Willing ◽  
Emese X. Szabo ◽  
Anchilie G. Francisco-Mangilet ◽  
Irina Droste-Borel ◽  
...  
2017 ◽  
Author(s):  
Marcella de Francisco Amorim ◽  
Eva-Maria Willing ◽  
Anchilie G. Francisco-Mangilet ◽  
Irina Droste-Borel ◽  
Boris Maček ◽  
...  

AbstractIntrons are removed by the spliceosome, a large macromolecular complex composed of five ribonucleoprotein subcomplexes (U snRNP). The U1 snRNP, which binds to 5’ splice sites, plays an essential role in early steps of the splicing reaction. Here, we show that Arabidopsis LUC7 proteins, which are encoded by a three-member gene family in Arabidopsis, are important for plant development and stress resistance. We show that LUC7 are U1 snRNP accessory proteins by RNA immunoprecipitation experiments and LUC7 protein complex purifications. Transcriptome analyses revealed that LUC7 proteins are not only important for constitutive splicing, but also affects hundreds of alternative splicing events. Interestingly, LUC7 proteins specifically promote splicing of a subset of terminal introns. Splicing of LUC7-dependent introns is a prerequisite for nuclear export and some splicing events are modulated by stress in a LUC7-dependent manner. Taken together our results highlight the importance of the U1 snRNP component LUC7 in splicing regulation and suggest a previously unrecognized role of a U1 snRNP accessory factor in terminal intron splicing.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1261
Author(s):  
Péter Pálfi ◽  
László Bakacsy ◽  
Henrietta Kovács ◽  
Ágnes Szepesi

Hypusination is a unique posttranslational modification of eIF5A, a eukaryotic translation factor. Hypusine is a rare amino acid synthesized in this process and is mediated by two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). Despite the essential participation of this conserved eIF5A protein in plant development and stress responses, our knowledge of its proper function is limited. In this review, we demonstrate the main findings regarding how eIF5A and hypusination could contribute to plant-specific responses in growth and stress-related processes. Our aim is to briefly discuss the plant-specific details of hypusination and decipher those signal pathways which can be effectively modified by this process. The diverse functions of eIF5A isoforms are also discussed in this review.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Guiomar Martín ◽  
Yamile Márquez ◽  
Federica Mantica ◽  
Paula Duque ◽  
Manuel Irimia

Abstract Background Alternative splicing (AS) is a widespread regulatory mechanism in multicellular organisms. Numerous transcriptomic and single-gene studies in plants have investigated AS in response to specific conditions, especially environmental stress, unveiling substantial amounts of intron retention that modulate gene expression. However, a comprehensive study contrasting stress-response and tissue-specific AS patterns and directly comparing them with those of animal models is still missing. Results We generate a massive resource for Arabidopsis thaliana, PastDB, comprising AS and gene expression quantifications across tissues, development and environmental conditions, including abiotic and biotic stresses. Harmonized analysis of these datasets reveals that A. thaliana shows high levels of AS, similar to fruitflies, and that, compared to animals, disproportionately uses AS for stress responses. We identify core sets of genes regulated specifically by either AS or transcription upon stresses or among tissues, a regulatory specialization that is tightly mirrored by the genomic features of these genes. Unexpectedly, non-intron retention events, including exon skipping, are overrepresented across regulated AS sets in A. thaliana, being also largely involved in modulating gene expression through NMD and uORF inclusion. Conclusions Non-intron retention events have likely been functionally underrated in plants. AS constitutes a distinct regulatory layer controlling gene expression upon internal and external stimuli whose target genes and master regulators are hardwired at the genomic level to specifically undergo post-transcriptional regulation. Given the higher relevance of AS in the response to different stresses when compared to animals, this molecular hardwiring is likely required for a proper environmental response in A. thaliana.


The Analyst ◽  
2021 ◽  
Author(s):  
Chao Zhang ◽  
Asta Žukauskaitė ◽  
Ivan Petřík ◽  
Aleš Pěnčík ◽  
Martin Hönig ◽  
...  

Phytohormones (plant hormones) are a group of small signalling molecules that act as important endogenous regulators in the plant development and stress responses. Previous research has identified phytohormone species, jasmonates,...


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fuyun Hou ◽  
Taifeng Du ◽  
Zhen Qin ◽  
Tao Xu ◽  
Aixian Li ◽  
...  

Abstract Background Sweetpotato (Ipomoea batatas (L.) Lam.) serves as an important food source for human beings. β-galactosidase (bgal) is a glycosyl hydrolase involved in cell wall modification, which plays essential roles in plant development and environmental stress adaptation. However, the function of bgal genes in sweetpotato remains unclear. Results In this study, 17 β-galactosidase genes (Ibbgal) were identified in sweetpotato, which were classified into seven subfamilies using interspecific phylogenetic and comparative analysis. The promoter regions of Ibbgals harbored several stress, hormone and light responsive cis-acting elements. Quantitative real-time PCR results displayed that Ibbgal genes had the distinct expression patterns across different tissues and varieties. Moreover, the expression profiles under various hormonal treatments, abiotic and biotic stresses were highly divergent in leaves and root. Conclusions Taken together, these findings suggested that Ibbgals might play an important role in plant development and stress responses, which provided evidences for further study of bgal function and sweetpotato breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bruno Paes Melo ◽  
Isabela Tristan Lourenço-Tessutti ◽  
Otto Teixeira Fraga ◽  
Luanna Bezerra Pinheiro ◽  
Camila Barrozo de Jesus Lins ◽  
...  

AbstractNACs are plant-specific transcription factors involved in controlling plant development, stress responses, and senescence. As senescence-associated genes (SAGs), NACs integrate age- and stress-dependent pathways that converge to programmed cell death (PCD). In Arabidopsis, NAC-SAGs belong to well-characterized regulatory networks, poorly understood in soybean. Here, we interrogated the soybean genome and provided a comprehensive analysis of senescence-associated Glycine max (Gm) NACs. To functionally examine GmNAC-SAGs, we selected GmNAC065, a putative ortholog of Arabidopsis ANAC083/VNI2 SAG, and the cell death-promoting GmNAC085, an ANAC072 SAG putative ortholog, for analyses. Expression analysis of GmNAC065 and GmNAC085 in soybean demonstrated (i) these cell death-promoting GmNACs display contrasting expression changes during age- and stress-induced senescence; (ii) they are co-expressed with functionally different gene sets involved in stress and PCD, and (iii) are differentially induced by PCD inducers. Furthermore, we demonstrated GmNAC065 expression delays senescence in Arabidopsis, a phenotype associated with enhanced oxidative performance under multiple stresses, higher chlorophyll, carotenoid and sugar contents, and lower stress-induced PCD compared to wild-type. In contrast, GmNAC085 accelerated stress-induced senescence, causing enhanced chlorophyll loss, ROS accumulation and cell death, decreased antioxidative system expression and activity. Accordingly, GmNAC065 and GmNAC085 targeted functionally contrasting sets of downstream AtSAGs, further indicating that GmNAC85 and GmNAC065 regulators function inversely in developmental and environmental PCD.


2019 ◽  
Vol 14 (10) ◽  
pp. e1644596 ◽  
Author(s):  
Xi Sun ◽  
Guoliang Han ◽  
Zhe Meng ◽  
Lin Lin ◽  
Na Sui

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2169
Author(s):  
Hailian Zhou ◽  
Jiaying Li ◽  
Xueyuan Liu ◽  
Xiaoshuang Wei ◽  
Ziwei He ◽  
...  

Bcl-2-associated athanogene (BAG), a group of proteins evolutionarily conserved and functioned as co-chaperones in plants and animals, is involved in various cell activities and diverse physiological processes. However, the biological functions of this gene family in rice are largely unknown. In this study, we identified a total of six BAG members in rice. These genes were classified into two groups, OsBAG1, -2, -3, and -4 are in group I with a conserved ubiquitin-like structure and OsBAG5 and -6 are in group Ⅱ with a calmodulin-binding domain, in addition to a common BAG domain. The BAG genes exhibited diverse expression patterns, with OsBAG4 showing the highest expression level, followed by OsBAG1 and OsBAG3, and OsBAG6 preferentially expressed in the panicle, endosperm, and calli. The co-expression analysis and the hierarchical cluster analysis indicated that the OsBAG1 and OsBAG3 were co-expressed with primary cell wall-biosynthesizing genes, OsBAG4 was co-expressed with phytohormone and transcriptional factors, and OsBAG6 was co-expressed with disease and shock-associated genes. β-glucuronidase (GUS) staining further indicated that OsBAG3 is mainly involved in primary young tissues under both primary and secondary growth. In addition, the expression of the BAG genes under brown planthopper (BPH) feeding, N, P, and K deficiency, heat, drought and plant hormones treatments was investigated. Our results clearly showed that OsBAGs are multifunctional molecules as inferred by their protein structures, subcellular localizations, and expression profiles. BAGs in group I are mainly involved in plant development, whereas BAGs in group II are reactive in gene regulations and stress responses. Our results provide a solid basis for the further elucidation of the biological functions of plant BAG genes.


Sign in / Sign up

Export Citation Format

Share Document