Volatile Fraction of Ewe's Milk Semi-Hard Cheese Manufactured with and without the Addition of a Cysteine Proteinase

2001 ◽  
Vol 7 (2) ◽  
pp. 131-139
Author(s):  
R.G. Mariaca ◽  
E. FernÁndez-GarcÍa ◽  
A.F. Mohedano ◽  
M. NuÑez
2001 ◽  
Vol 7 (2) ◽  
pp. 131-139 ◽  
Author(s):  
R. G. Mariaca ◽  
E. Fernandez-Garcia ◽  
A. F. Mohedano ◽  
M. Nufiez

A dynamic headspace technique (purge and trap) coupled to gas chromatography-mass spectrometry was used for the study of the volatile fraction of pasteurized ewe's milk cheese. The effect of the addition of the cysteine proteinase of Micrococcus sp. INIA 528 to milk on the formation of volatile aroma compounds in cheese was also evaluated. Forty-five compounds, in total, were identified, including hydrocarbons, alcohols, ketones, aldehydes, esters, terpenes and sulfur compounds. The abundance of most volatile compounds increased significantly (P < 0.05) with ripening time, except those of ethanol and 2,3-butanedione which decreased. Acetaldehyde and some minor components did not vary remarkably during ripening. Acetaldehyde, 2-methyl-I-butanal, 3-methyl-I-butanal, 2-propanol, 2-pentanone and 3-methyl-3-buten-1-ol were the only compounds affected by the addition of cysteine proteinase. The more extensive proteolysis in cheese with cysteine proteinase might have enhanced the formation of volatile compounds derived from amino acids, such as acetaldehyde, 2-methyl-1-butanal and 3-methyl-I-butanal, formed from threonine, isoleucine and leucine breakdown, respectively.


2001 ◽  
Vol 7 (2) ◽  
pp. 131-139 ◽  
Author(s):  
R.G. Mariaca ◽  
E. Fernández-García ◽  
A.F. Mohedano ◽  
M. Nuñez

2020 ◽  
Vol 56 (4) ◽  
pp. 18-20
Author(s):  
A.D. Koval ◽  
◽  
A.N. Belov ◽  
A.V. Grishkova ◽  
A.V. Mironova ◽  
...  

2019 ◽  
Vol 20 (11) ◽  
pp. 1203-1216 ◽  
Author(s):  
Vilma G. Duschak

American Trypanosomiasis, a parasitic infection commonly named Chagas disease, affects millions of people all over Latin American countries. Presently, the World Health Organization (WHO) predicts that the number of international infected individuals extends to 7 to 8 million, assuming that more than 10,000 deaths occur annually. The transmission of the etiologic agent, Trypanosoma cruzi, through people migrating to non-endemic world nations makes it an emergent disease. The best promising targets for trypanocidal drugs may be classified into three main groups: Group I includes the main molecular targets that are considered among specific enzymes involved in the essential processes for parasite survival, principally Cruzipain, the major antigenic parasite cysteine proteinase. Group II involves biological pathways and their key specific enzymes, such as Sterol biosynthesis pathway, among others, specific antioxidant defense mechanisms, and bioenergetics ones. Group III includes the atypical organelles /structures present in the parasite relevant clinical forms, which are absent or considerably different from those present in mammals and biological processes related to them. These can be considered potential targets to develop drugs with extra effectiveness and fewer secondary effects than the currently used therapeutics. An improved distinction between the host and the parasite targets will help fight against this neglected disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


2021 ◽  
Vol 31 (1) ◽  
pp. 59-66
Author(s):  
Victor Pena Ribeiro ◽  
Guilherme Venâncio Símaro ◽  
Jennyfer Andrea Aldana Mejia ◽  
Caroline Arruda ◽  
Jairo Kenupp Bastos

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 306 ◽  
Author(s):  
Raimondo Gaglio ◽  
Ignazio Restivo ◽  
Marcella Barbera ◽  
Pietro Barbaccia ◽  
Marialetizia Ponte ◽  
...  

An innovative ovine cheese enriched with red grape pomace powder (GPP) was produced to improve the functional properties of Vastedda cheese typology. Vastedda cheese making was performed adding GPP and four selected Lactococcus lactis strains (Mise36, Mise94, Mise169 and Mise190). For each strain, 40 L of pasteurized ewe’s milk was divided into two aliquots representing control and experimental trials. Control cheese (CC) production did not contain GPP, while the experimental cheese (EC) production was enriched with 1% (w/w) GPP. GPP did not slow down starter development and acid generation. Plate counts and randomly amplified polymorphic DNA (RAPD)-PCR analysis confirmed the dominance of the starters in all trials. The evolution of the physicochemical parameters showed that EC productions were characterized by lower fat content, higher protein content, and higher values of secondary lipid oxidation. Sensory evaluation indicated that the cheeses produced with the strain Mise94 were those more appreciated by the judges. Thus, the last cheeses were investigated for some functional aspects: GPP enrichment significantly increased antioxidant activity and lipoperoxyl radical scavenger capacity, confirming that grape polyphenol inclusion in cheese represents an optimal strategy for the valorization of ovine cheeses as well as winemaking industry by-products.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1565
Author(s):  
Eleni Kakouri ◽  
Panagiota-Kyriaki Revelou ◽  
Charalabos Kanakis ◽  
Dimitra Daferera ◽  
Christos S. Pappas ◽  
...  

Olive oil is among the most popular supplements of the Mediterranean diet due to its high nutritional value. However, at the same time, because of economical purposes, it is also one of the products most subjected to adulteration. As a result, authenticity is an important issue of concern among authorities. Many analytical techniques, able to detect adulteration of olive oil, to identify its geographical and botanical origin and consequently guarantee its quality and authenticity, have been developed. This review paper discusses the use of infrared and Raman spectroscopy as candidate tools to examine the authenticity of olive oils. It also considers the volatile fraction as a marker to distinguish between different varieties and adulterated olive oils, using SPME combined with gas chromatography technique.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3193
Author(s):  
Bagda Sagynaikyzy Zhumakanova ◽  
Izabela Korona-Głowniak ◽  
Krystyna Skalicka-Woźniak ◽  
Agnieszka Ludwiczuk ◽  
Tomasz Baj ◽  
...  

The chemical composition of the hydroethanolic extracts (60% v/v) from the aerial parts of Thymus marschallianus Willd (TM) and Thymus seravschanicus Klokov (TS) from Southern Kazakhstan flora was analyzed together with their hexane fractions. Determination of antibacterial, antifungal and antioxidant activities of both extracts was also performed. RP-HPLC/PDA and HPLC/ESI-QTOF-MS showed that there were some differences between the composition of both extracts. The most characteristic components of TM were rosmarinic acid, protocatechuic acid, luteolin 7-O-glucoside, and apigenin 7-O-glucuronide, while protocatechuic acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, and eriodictyol predominated in TS. The content of polyplenols was higher in TS than in TM. The GC-MS analysis of the volatile fraction of both examined extracts revealed the presence of thymol and carvacrol. Additionally, sesquiterpenoids, fatty acids, and their ethyl esters were found in TM, and fatty acid methyl esters in TS. The antioxidant activity of both extracts was similar. The antibacterial activity of TS extract was somewhat higher than TM, while antifungal activity was the same. TS extract was the most active against Helicobacter pylori ATCC 43504 with MIC (minimal inhibitory concentration) = 0.625 mg/mL, exerting a bactericidal effect. The obtained data provide novel information about the phytochemistry of both thyme species and suggest new potential application of TS as a source of bioactive compounds, especially with anti-H. pylori activity.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 846
Author(s):  
Aleksandra Halarewicz ◽  
Antoni Szumny ◽  
Paulina Bączek

In temperate European forests invaded by Prunus serotina Ehrh. (black cherry), a reduction in the spontaneous regeneration capacity of Pinus sylvestris L. (Scots pine) is observed. It could be caused by various factors, including allelopathic properties of this invasive plant. In this study the phytotoxic effect of P. serotina volatile compounds on P. sylvestris and the seasonal variation in this effect were assessed. Simple assays showed that volatiles emitted from P. serotina leaves significantly inhibited root growth of P. sylvestris seedlings. Their negative effect on stem growth was much weaker. The strongest phytotoxic effect on Scots pine seedlings was caused by the volatiles emitted from the youngest black cherry leaves. In fresh foliage of P. serotina, nineteen volatile organic compounds were identified by gas chromatography–mass spectrometry (GC–MS). The dominant compound was benzaldehyde. On the basis of tests of linalool alone, it was found that this monoterpene present in the volatile fraction has a strong allelopathic potential and inhibits germination, root elongation and shoot elongation of pine seedlings. The results of our research suggest that volatile compounds from P. serotina leaves could limited survival of P. sylvestris individuals in the seedling phase.


Sign in / Sign up

Export Citation Format

Share Document