The structure of trititanate nanotubes

2002 ◽  
Vol 58 (4) ◽  
pp. 587-593 ◽  
Author(s):  
Q. Chen ◽  
G.H. Du ◽  
S. Zhang ◽  
L.-M. Peng

A comprehensive chemical and structural analysis is made of a new type of trititanate nanotube, which is synthesized via the reaction of TiO2 particles with NaOH aqueous solution. It is found that the trititanate nanotubes are multi-walled scroll nanotubes with an inter-shell spacing of about 0.78 nm and an average diameter of about 9 nm. An atomic model of the nanotube is derived based on information from powder X-ray diffraction, selective-area electron diffraction, high-resolution electron microscopy and structure simulations. A model nanotube may be constructed by wrapping a (100) sheet of H2Ti3O7 along [001] with the tube axis parallel to [010].

1995 ◽  
Vol 398 ◽  
Author(s):  
A. Tomasi ◽  
E. Galvanetto ◽  
F.C. Matacotta ◽  
P. Nozar ◽  
P. Scardi ◽  
...  

ABSTRACTA systematic study on phase formation and stabilisation in the Ba-Cu-C-O system in the temperature range 20-500°C, under various atmospheres, by traditional thermal analysis techniques, high temperature X-ray diffraction and high resolution electron microscopy, has permitted to identify and characterise the formation kinetics of a new copper containing phase isomorphic to γ-BaCO3.


2009 ◽  
Vol 73 (5) ◽  
pp. 883-890 ◽  
Author(s):  
I. V. Rozhdestvenskaya ◽  
T. Kogure ◽  
E. Abe ◽  
V. A. Drits

AbstractThe crystal structure of charoite was investigated mainly by using selected-area electron diffraction (SAED), X-ray diffraction (XRD) and high-resolution electron microscopy (HREM). SAED and XRD patterns indicate that the structure has a monoclinic cell: a = 32.296, b = 19.651, c = 7.16 Å, β = 96.3° and V = 4517 Å3. The space group inferred from systematic absences and HREM images is P21/m. A model of the charoite structure is proposed that is based on the features of related Ca-alkaline silicate structures and HREM images. The structure of charoite consists of three different silicon-oxygen radicals (polymerized SiO4 tetrahedra) which are located between Ca polyhedra. Two of these radicals form continuous tubular structures comprising pectolite-like tetrahedral chains. Calcium polyhedra are joined to form blocks, each of which consists of four columns sharing edges and apices. Potassium and H2O molecules are probably located inside the tubular silicate radicals. From these results, a general formula is derived: K6-7(Ca,Na)18[(Si6O17)(Si12O30)(Si18O45)](OH,F)2.nH2O with two formula units in the unit cell (Z = 2).


1992 ◽  
Vol 7 (6) ◽  
pp. 1356-1369 ◽  
Author(s):  
B.M. Davis ◽  
D.X. Li ◽  
D.N. Seidman ◽  
J.B. Ketterson ◽  
R. Bhadra ◽  
...  

A series of Cu/Pd superlattices with composition modulation wavelengths (Λ's) ranging from 1.6 to 3.5 nm and a strong [111] growth texture were prepared by electron beam evaporation. The elastic properties of the films were examined using the methods of uniaxial tension tests [a Young's modulus (1/s11), where sij is an elastic compliance] with the applied load parallel to the plane of the Cu/Pd interface and Brillouin scattering [a shear modulus (1/s44) with the shear waves parallel to the plane of the Cu/Pd interface]. Also, the films were characterized using both x-ray diffraction and high-resolution electron microscopy; this was done to assess the effect of the nanostructure on a possible “supermodulus effect.” The films are nanostructurally very similar to the superlattice films employed in previous studies at Northwestern in which a supermodulus effect was reported. But, contrary to previous studies, no anomalous behavior was observed for the measured elastic properties of the thin films. Therefore the present results negate the earlier results and cast a serious doubt on the existence of a supermodulus effect.


Author(s):  
A. Legrouri

The oxides of vanadium, especially vanadium pentoxide, have been extensively studied because of their interesting physical properties particularly in catalysis. Vanadium pentoxide is generally used in the oxidation and ammoxidation of hydrocarbons.This catalyst has been prepared via the thermal decomposition of ammonium metavanadate (AMV) in air. Thermogravimetric analysis (TGA), infrared spectroscopy (IRS) and x-ray diffraction (XRD) techniques together with high resolution electron microscopy (HREM) and scanning electron microscopy (SEM) have enabled us to elucidate the physicochemical changes occurring during the decomposition process.According to TGA results, the decomposition of AMV commences at 150°C and is complete by 320°C leading to vanadium pentoxide by loss of ammonia and water with the formation of two intermediate compounds, namely at 190°C, ammonium bivanadate: (NH4)2V4 O11, and at 230°C, ammonium hexavanadate AHV: (NH4)2V6O16 . Samples for structural correlation studies were prepared by heating AMV in a stream of air for 2 hours at selected temperatures of 140, 190, 230, 320 and 400°C.


1997 ◽  
Vol 3 (S2) ◽  
pp. 441-442
Author(s):  
P.A. Crozier ◽  
I.Y. Chan ◽  
C.Y. Chen ◽  
L.W. Finger ◽  
R.C. Medrud ◽  
...  

Low-dose high resolution electron microscopy (HREM) is a useful technique for elucidating the structure of zeolites. In recent years a number of zeolite structures have been solved using combinations of different characterization techniques including adsorption measurements, powder x-ray diffraction and low-dose high resolution electron microscopy (for example see ref. 2). We have used these techniques to study the structure of a novel zeolite material. However, great care must be exercised when interpreting data from these techniques in terms of crystal structural units. In this particular case, the structure was recently determined using single crystal x-ray diffraction and showed some surprises.Details of the synthesis of this zeolite are given elsewhere. The high adsorption capacity suggested that this zeolite possessed two interpenetrating channels (either a 10 and a 12 ring or two 12 ring channels). X-ray powder diffraction showed the material to be monoclinic with a= 18.5Å, b= 13.4 Å, c= 7.6 Å β = 101.5°).


1993 ◽  
Vol 297 ◽  
Author(s):  
Weiqiang Han ◽  
Gaorong Han ◽  
Jianmin Qiao ◽  
Piyi Du ◽  
Zhishang Ding ◽  
...  

Nanocrystalline silicon (nc-Si:H) films with an average grain size ranging between 2 and 10 nm are prepared in a modified plasma chemical vapor deposition system. X-ray diffraction, transmission electron diffraction, and high resolution electron microscope are used to elucidate the structural nature in the deposited nc-Si:H films. The lattice network of the deposited silicon films changes from disordered structure to ordered structure with the increasing of plasma energy. The results also show that the crystal lattice of the nc-Si:H film is distorted from those of microcrystalline silicon and crystalline silicon. In the observed x-ray diffraction, there are two anomalous peaks at 2θ = 29.5° and 32.5° of Si besides the normal peaks at 2θ = 28.5° of Si(111) and 2θ = 47.3°of Si(220). By the high resolution electron microscopy study, a new crystallography structure with distorted Si(111) crystallites in nc- Si:H films is found. Based on our results, a structure model of nc-Si:H films is proposed.


Sign in / Sign up

Export Citation Format

Share Document