Absolute calibration of a soft X-ray spectrograph for X-ray laser research using white beam

1998 ◽  
Vol 5 (3) ◽  
pp. 756-758 ◽  
Author(s):  
C. Fujikawa ◽  
T. Kawachi ◽  
K. Ando ◽  
N. Yamaguchi ◽  
T. Hara

Absolute calibration of a soft X-ray spectrograph has been performed using a white beam of synchrotron radiation. The calibrated spectrograph was a flat-field grazing-incidence spectrograph with an X-ray CCD detector for X-ray laser research. Absolute sensitivity of the spectrograph system can be obtained from transmitted spectra using filters made of several different materials, each providing an absorption-edge wavelength standard. The absolute sensitivity determined in this work shows nearly the same behaviour with wavelength as that in another calibration experiment using a laser-produced plasma as an X-ray source.

2002 ◽  
Vol 09 (02) ◽  
pp. 937-941 ◽  
Author(s):  
P. LUCHES ◽  
C. GIOVANARDI ◽  
T. MOIA ◽  
S. VALERI ◽  
F. BRUNO ◽  
...  

CoO layers have been grown by exposing to oxygen the (001) body-centered-tetragonal (bct) surface of a Co ultrathin film epitaxially grown on Fe(001). Different oxide thicknesses in the 2–15 ML range have been investigated by means of synchrotron-radiation-based techniques. X-ray photoelectron spectroscopy has been used to check the formation of the oxide films; X ray photoelectron diffraction has given information concerning the symmetry of their unit cell; grazing incidence X-ray diffraction has allowed to evaluate precisely their in-plane lattice constant. The films show a CoO(001) rocksalt structure, rotated by 45° with respect to the bct Co substrate, with the [100] direction parallel to the substrate [110] direction. Their in-plane lattice constant increases as a function of thickness, to release the in-plane strain due to the 3% mismatch between the bulk CoO phase and the underlying substrate.


1991 ◽  
Vol 35 (A) ◽  
pp. 247-253
Author(s):  
G.-D. Yao ◽  
J. Wu ◽  
T. Fanning ◽  
M. Dudley

AbstractWhite beam synchrotron X-ray topography has been applied both to the characterization of two semiconductor heterostructures, GaAs/Si and InxGa1-xAs/GaAs strained layers, and a substrate to be used for growing semiconductor epilayers, Cd1-xZnxTe. In the case of the heterostructures, misfit dislocations were observed using depth sensitive X-ray topographic imaging in grazing incidence Bragg-Laue geometries. The X-ray penetration depth, which can be varied from several hundreds of angstroms to hundreds of micrometers by rotating about the main reflection vector, which in this specific case was (355), is governed by kinernatical theory. This is justified by comparing dislocation contrast and visibility with the extent of the calculated effective misorientalion field in comparison to the effective X-ray penetration depth. For the case of Cd1-xZnxTe, twin configurations are observed, and their analysis is presented.


1991 ◽  
Vol 35 (B) ◽  
pp. 795-806
Author(s):  
Atsuo Iida

AbstractThe X-ray fluorescence analysis of a trace element under a grazing incidence condition has been developed using synchrotron radiation. The interference effect plays an important role for determining the depth distribution of the elemental concentration. The elemental distribution above, on or below the material surface has been studied. The glancing angle dependence of the X-ray fluorescence signal around the critical angle strongly reflects the elemental distribution, and can be used to determine the position of the element of interest.


1989 ◽  
Vol 159 ◽  
Author(s):  
Koichi Akimoto ◽  
Jun'Ichiro Mizuki ◽  
Ichiro Hirosawa ◽  
Junji Matsui

ABSTRACTSurface superstructures (reconstructed structures) have been observed by many authors. However, it is not easy to confirm that a superstructure does exist at an interface between two solid layers. The present paper reports a direct observation, by a grazing incidence x-ray diffraction technique with use of synchrotron radiation, of superstructures at the interface. Firstly, the boron-induced R30° reconstruction at the Si interface has been investigated. At the a Si/Si(111) interface, boron atoms at 1/3 ML are substituted for silicon atoms, thus forming a R30° lattice. Even at the interface between a solid phase epitaxial Si(111) layer and a Si(111) substrate, the boron-induced R30° reconstruction has been also observed. Secondly, SiO2/Si(100)-2×l interfacial superstructures have been investigated. Interfacial superstructures have been only observed in the samples of which SiO2 layers have been deposited with a molecular beam deposition method. Finally, the interfaces of MOCVD-grown AIN/GaAs(100) have been shown to have 1×4 and 1×6 superstructures.


Sign in / Sign up

Export Citation Format

Share Document