scholarly journals In situ Bragg coherent X-ray diffraction during tensile testing of an individual Au nanowire

2018 ◽  
Vol 51 (3) ◽  
pp. 781-788 ◽  
Author(s):  
J. Shin ◽  
T. W. Cornelius ◽  
S. Labat ◽  
F. Lauraux ◽  
M.-I. Richard ◽  
...  

Systematic tensile tests were performed on single defect-free 〈110〉 Au nanowires grown by physical vapor deposition while simultaneously recording three-dimensional Bragg peaks using coherent X-rays. The trajectory of three-dimensional Bragg peaks in reciprocal space during tensile testing allowed for measurements of the evolution of strains and rotations of the nanowire, thus sensitively uncovering the full deformation geometry of the nanowire. The transition from elastic to plastic deformation is accompanied by rotations of the nanowire as quantified by analysis of the motion of Bragg peaks, showing the importance of boundary conditions in interpreting nanoscale mechanical deformations.

2018 ◽  
Vol 2 (4) ◽  
pp. 24 ◽  
Author(s):  
Anton Davydok ◽  
Thomas Cornelius ◽  
Zhe Ren ◽  
Cedric Leclere ◽  
Gilbert Chahine ◽  
...  

The three-point bending behavior of a single Au nanowire deformed by an atomic force microscope was monitored by coherent X-ray diffraction using a sub-micrometer sized hard X-ray beam. Three-dimensional reciprocal-space maps were recorded before and after deformation by standard rocking curves and were measured by scanning the energy of the incident X-ray beam during deformation at different loading stages. The mechanical behavior of the nanowire was visualized in reciprocal space and a complex deformation mechanism is described. In addition to the expected bending of the nanowire, torsion was detected. Bending and torsion angles were quantified from the high-resolution diffraction data.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 177-181 ◽  
Author(s):  
Ian K. Robinson ◽  
Jianwei Miao

AbstractX-rays have been widely used in the structural analysis of materials because of their significant penetration ability, at least on the length scale of the granularity of most materials. This allows, in principle, for fully three-dimensional characterization of the bulk properties of a material. One of the main advantages of x-ray diffraction over electron microscopy is that destructive sample preparation to create thin sections is often avoidable. A major disadvantage of x-ray diffraction with respect to electron microscopy is its inability to produce real-space images of the materials under investigation—there are simply no suitable lenses available. There has been significant progress in x-ray microscopy associated with the development of lenses, usually based on zone plates, Kirkpatrick–Baez mirrors, or compound refractive lenses. These technologies are far behind the development of electron optics, particularly for the large magnification ratios needed to attain high resolution. In this article, the authors report progress toward the development of an alternative general approach to imaging, the direct inversion of diffraction patterns by computation methods. By avoiding the use of an objective lens altogether, the technique is free from aberrations that limit the resolution, and it can be highly efficient with respect to radiation damage of the samples. It can take full advantage of the three-dimensional capability that comes from the x-ray penetration. The inversion step employs computational methods based on oversampling to obtain a general solution of the diffraction phase problem.


1998 ◽  
Vol 5 (3) ◽  
pp. 509-511 ◽  
Author(s):  
T. Kaneyoshi ◽  
T. Ishihara ◽  
H. Yoshioka ◽  
M. Motoyama ◽  
S. Fukushima ◽  
...  

Plans to construct surface-analysis equipment which will be placed on beamline BL24XU of SPring-8 are presented. There are three experimental hutches in BL24XU, which are available simultaneously by using diamond monochromators as beam splitters. The purpose of the surface-analysis equipment is the simultaneous measurement of fluorescent and diffracted X-rays in grazing-incidence geometry. The instrument is equipped with a solid-state detector (SSD) and a flat position-sensitive proportional counter (PSPC) combined with analysing crystals for X-ray fluorescence (XRF) analysis. A curved PSPC and the goniometer that mounts the SSD used for XRF are also installed for X-ray diffraction. X-ray fluorescence holography and polarized X-ray emission spectroscopy modes are available, so three-dimensional images of atomic configurations and also the anisotropic structure of materials will be studied.


1986 ◽  
Vol 6 (4) ◽  
pp. 265-287 ◽  
Author(s):  
H. J. Bunge

The crystallographic orientation distribution and the geometrical lamellae orientation distribution in lamellar eutectics are, in general, not independent of each other. The combined orientation-lamellae distribution function depends on five angular parameters. X-ray diffraction in such eutectics may exhibit an anisotropic macroscopic absorption factor if the penetration depth of the X-rays is large compared with their planar size. As a consequence, the reflected X-ray intensity may depend on a third angle γ, i.e. a rotation of the sample about the diffraction vector s additionally to the usual pole figure angles α, β which describe the orientation of the diffraction vector s with respect to the sample coordinate system. It is thus necessary to measure three-dimensional generalized pole figures instead of conventional two-dimensional ones.


2016 ◽  
Vol 23 (5) ◽  
pp. 1241-1244 ◽  
Author(s):  
Wonsuk Cha ◽  
Wenjun Liu ◽  
Ross Harder ◽  
Ruqing Xu ◽  
Paul H. Fuoss ◽  
...  

A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible within situsample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.


MRS Bulletin ◽  
2004 ◽  
Vol 29 (3) ◽  
pp. 166-169 ◽  
Author(s):  
Henning F. Poulsen ◽  
Dorte Juul Jensen ◽  
Gavin B.M. Vaughan

AbstractThree-dimensional x-ray diffraction (3DXRD) microscopy is a tool for fast and nondestructive characterization of the individual grains, subgrains, and domains inside bulk materials. The method is based on diffraction with very penetrating hard x-rays (E ≥ 50 keV), enabling 3D studies of millimeter-to-centimeter-thick specimens.The position, volume, orientation, and elastic and plastic strain can be derived for hundreds of grains simultaneously. Furthermore, by applying novel reconstruction methods, 3D maps of the grain boundaries can be generated. The 3DXRD microscope in use at the European Synchrotron Radiation Facility in Grenoble, France, has a spatial resolution of ∼5 μm and can detect grains as small as 150 nm. The technique enables, for the first time, dynamic studies of the individual grains within polycrystalline materials. In this article, some fundamental materials science applications of 3DXRD are reviewed: studies of nucleation and growth kinetics during recrystallization, recovery, and phase transformations, as well as studies of polycrystal deformation.


Author(s):  
Fabiana San Martin ◽  
Ariel E. Mechaly ◽  
Nicole Larrieux ◽  
Elsio A. Wunder ◽  
Albert I. Ko ◽  
...  

The protein FcpA is a unique component of the flagellar filament of spirochete bacteria belonging to the genusLeptospira. Although it plays an essential role in translational motility and pathogenicity, no structures of FcpA homologues are currently available in the PDB. Its three-dimensional structure will unveil the novel motility mechanisms that render pathogenicLeptospiraparticularly efficient at invading and disseminating within their hosts, causing leptospirosis in humans and animals. FcpA fromL. interroganswas purified and crystallized, but despite laborious attempts no useful X ray diffraction data could be obtained. This challenge was solved by expressing a close orthologue from the related saprophytic speciesL. biflexa. Three different crystal forms were obtained: a primitive and a centred monoclinic form, as well as a hexagonal variant. All forms diffracted X-rays to suitable resolutions for crystallographic analyses, with the hexagonal type typically reaching the highest limits of 2.0 Å and better. A variation of the quick-soaking procedure resulted in an iodide derivative that was instrumental for single-wavelength anomalous diffraction methods.


Author(s):  
Jenny Pickworth Glusker ◽  
Kenneth N. Trueblood

Much of our present knowledge of the architecture of molecules has been obtained from studies of the diffraction of X rays or neutrons by crystals. X rays are scattered by the electrons of atoms and ions, and the interference between the X rays scattered by the different atoms or ions. in a crystal can result in a diffraction pattern. Similarly, neutrons are scattered by the nuclei of atoms. Measurements on a crystal diffraction pattern can lead to information on the arrangement of atoms or ions within the crystal. This is the experimental technique to be described in this book. X-ray diffraction was first used to establish the three-dimensional arrangement of atoms in a crystal by William Lawrence Bragg in 1913 (Bragg, 1913), shortly after Wilhelm Conrad Röntgen had discovered X rays and Max von Laue had shown in 1912 that these X rays could be diffracted by crystals (Röntgen, 1895; Friedrich et al., 1912). Later, in 1927 and 1936 respectively, it was also shown that electrons and neutrons could be diffracted by crystals (Davisson and Germer, 1927; von Halban and Preiswerk, 1936; Mitchell and Powers, 1936). Bragg found from X-ray diffraction studies that, in crystals of sodium chloride, each sodium is surrounded by six equidistant chlorines and each chlorine by six equidistant sodiums. No discrete molecules of NaCl were found and therefore Bragg surmised that the crystal consisted of sodium ions and chloride ions rather than individual (noncharged) atoms (Bragg, 1913); this had been predicted earlier by William Barlow and William Jackson Pope (Barlow and Pope, 1907), but had not, prior to the research of the Braggs, been demonstrated experimentally. A decade and a half later, in 1928, Kathleen Lonsdale used X-ray diffraction methods to show that the benzene ring is a flat regular hexagon in which all carbon–carbon bonds are equal in length, rather than a ring structure that contains alternating single and double bonds (Lonsdale, 1928).Her experimental result, later confirmed by spectroscopic studies (Stoicheff, 1954), was of great significance in chemistry.


Author(s):  
S. F. Nielsen ◽  
C. Gundlach ◽  
E. M. Lauridsen ◽  
R. V. Martins ◽  
H. F. Poulsen ◽  
...  

By Three Dimensional X-ray Diffraction (3DXRD) microscopy it is possible to characterize microstructures non-destructively in 3 dimensions. The measurements are furthermore typically so fast that dynamics may be monitored in-situ, giving also the 4th dimension, namely the time. The 3DXRD technique is based on diffraction of high energy x-rays from third generation synchrotron sources. In the present paper the 3DXRD technique is described and it’s potentials are illustrated by examples relating to elastic and plastic strains, recovery, recrystallization and grain growth.


Author(s):  
Anton Davydok ◽  
Thomas W. Cornelius ◽  
Zhe Ren ◽  
Cedric Leclere ◽  
Gilbert Chahine ◽  
...  

The three-point bending behavior of a single Au nanowire deformed with an atomic force microscope was monitored by coherent X-ray diffraction using a sub-micrometer sized hard X-ray beam. While three-dimensional reciprocal-space maps were recorded before and after deformation by standard rocking curves, they were measured by scanning the energy of the incident X-ray beam during deformation at different loading stages. The mechanical behavior of the nanowire is visualized in reciprocal space and a complex deformation mechanism is described. In addition to the expected bending of the nanowire, torsion is detected. Bending and torsion angles are quantified from the high resolution diffraction data.


Sign in / Sign up

Export Citation Format

Share Document