scholarly journals The microfluidic laboratory at Synchrotron SOLEIL

2020 ◽  
Vol 27 (1) ◽  
pp. 230-237
Author(s):  
Igor Chaussavoine ◽  
Anthony Beauvois ◽  
Tiphaine Mateo ◽  
Ramakrishna Vasireddi ◽  
Nadine Douri ◽  
...  

A microfluidic laboratory recently opened at Synchrotron SOLEIL, dedicated to in-house research and external users. Its purpose is to provide the equipment and expertise that allow the development of microfluidic systems adapted to the beamlines of SOLEIL as well as other light sources. Such systems can be used to continuously deliver a liquid sample under a photon beam, keep a solid sample in a liquid environment or provide a means to track a chemical reaction in a time-resolved manner. The laboratory provides all the amenities required for the design and preparation of soft-lithography microfluidic chips compatible with synchrotron-based experiments. Three examples of microfluidic systems that were used on SOLEIL beamlines are presented, which allow the use of X-ray techniques to study physical, chemical or biological phenomena.

2016 ◽  
Vol 23 (1) ◽  
pp. 141-151 ◽  
Author(s):  
A. G. Stepanov ◽  
C. P. Hauri

High-brightness X-ray radiation produced by third-generation synchrotron light sources (TGLS) has been used for numerous time-resolved investigations in many different scientific fields. The typical time duration of X-ray pulses delivered by these large-scale machines is about 50–100 ps. A growing number of time-resolved studies would benefit from X-ray pulses with two or three orders of magnitude shorter duration. Here, techniques explored in the past for shorter X-ray pulse emission at TGLS are reviewed and the perspective towards the realisation of picosecond and sub-picosecond X-ray pulses are discussed.


2014 ◽  
Vol 369 (1647) ◽  
pp. 20130336 ◽  
Author(s):  
Kristoffer Haldrup

The development of new X-ray light sources, XFELs, with unprecedented time and brilliance characteristics has led to the availability of very large datasets with high time resolution and superior signal strength. The chaotic nature of the emission processes in such sources as well as entirely novel detector demands has also led to significant challenges in terms of data analysis. This paper describes a heuristic approach to datasets where spurious background contributions of a magnitude similar to (or larger) than the signal of interest prevents conventional analysis approaches. The method relies on singular-value decomposition of no-signal subsets of acquired datasets in combination with model inputs and appears generally applicable to time-resolved X-ray diffuse scattering experiments.


MRS Bulletin ◽  
2010 ◽  
Vol 35 (7) ◽  
pp. 514-519 ◽  
Author(s):  
Mariano Trigo ◽  
David Reis

AbstractRecent advances in pulsed x-ray sources have opened up new opportunities to study the dynamics of matter directly in the time domain with picosecond to femtosecond resolution. In this article, we present recent results from a variety of ultrafast sources on time-resolved x-ray scattering from elementary excitations in periodic solids. A few representative examples are given on folded acoustic phonons, coherent optical phonons, squeezed phonons, and polaritons excited by femtosecond lasers. Next-generation light sources, such as the x-ray-free electron laser, will lead to improvements in coherence, flux, and pulse duration. These experiments demonstrate potential opportunities for studying matter far from equilibrium on the fastest time scales and shortest distances that will be available in the coming years.


2016 ◽  
Vol 23 (3) ◽  
pp. 685-693 ◽  
Author(s):  
Michael E. Rutherford ◽  
David J. Chapman ◽  
Thomas G. White ◽  
Michael Drakopoulos ◽  
Alexander Rack ◽  
...  

The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).


IUCrJ ◽  
2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Francesco Dallari ◽  
Avni Jain ◽  
Marcin Sikorski ◽  
Johannes Möller ◽  
Richard Bean ◽  
...  

Many soft-matter systems are composed of macromolecules or nanoparticles suspended in water. The characteristic times at intrinsic length scales of a few nanometres fall therefore in the microsecond and sub-microsecond time regimes. With the development of free-electron lasers (FELs) and fourth-generation synchrotron light-sources, time-resolved experiments in such time and length ranges will become routinely accessible in the near future. In the present work we report our findings on prototypical soft-matter systems, composed of charge-stabilized silica nanoparticles dispersed in water, with radii between 12 and 15 nm and volume fractions between 0.005 and 0.2. The sample dynamics were probed by means of X-ray photon correlation spectroscopy, employing the megahertz pulse repetition rate of the European XFEL and the Adaptive Gain Integrating Pixel Detector. We show that it is possible to correctly identify the dynamical properties that determine the diffusion constant, both for stationary samples and for systems driven by XFEL pulses. Remarkably, despite the high photon density the only observable induced effect is the heating of the scattering volume, meaning that all other X-ray induced effects do not influence the structure and the dynamics on the probed timescales. This work also illustrates the potential to control such induced heating and it can be predicted with thermodynamic models.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Austin Echelmeier ◽  
Jorvani Cruz Villarreal ◽  
Marc Messerschmidt ◽  
Daihyun Kim ◽  
Jesse D. Coe ◽  
...  

Abstract Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) allows structure determination of membrane proteins and time-resolved crystallography. Common liquid sample delivery continuously jets the protein crystal suspension into the path of the XFEL, wasting a vast amount of sample due to the pulsed nature of all current XFEL sources. The European XFEL (EuXFEL) delivers femtosecond (fs) X-ray pulses in trains spaced 100 ms apart whereas pulses within trains are currently separated by 889 ns. Therefore, continuous sample delivery via fast jets wastes >99% of sample. Here, we introduce a microfluidic device delivering crystal laden droplets segmented with an immiscible oil reducing sample waste and demonstrate droplet injection at the EuXFEL compatible with high pressure liquid delivery of an SFX experiment. While achieving ~60% reduction in sample waste, we determine the structure of the enzyme 3-deoxy-D-manno-octulosonate-8-phosphate synthase from microcrystals delivered in droplets revealing distinct structural features not previously reported.


2019 ◽  
Vol 26 (2) ◽  
pp. 406-412 ◽  
Author(s):  
Diana C. F. Monteiro ◽  
Mohammad Vakili ◽  
Jessica Harich ◽  
Michael Sztucki ◽  
Susanne M. Meier ◽  
...  

Serial synchrotron crystallography allows low X-ray dose, room-temperature crystal structures of proteins to be determined from a population of microcrystals. Protein production and crystallization is a non-trivial procedure and it is essential to have X-ray-compatible sample environments that keep sample consumption low and the crystals in their native environment. This article presents a fast and optimized manufacturing route to metal–polyimide microfluidic flow-focusing devices which allow for the collection of X-ray diffraction data in flow. The flow-focusing conditions allow for sample consumption to be significantly decreased, while also opening up the possibility of more complex experiments such as rapid mixing for time-resolved serial crystallography. This high-repetition-rate experiment allows for full datasets to be obtained quickly (∼1 h) from crystal slurries in liquid flow. The X-ray compatible microfluidic chips are easily manufacturable, reliable and durable and require sample-flow rates on the order of only 30 µl h−1.


2014 ◽  
Vol 85 (9) ◽  
pp. 093102 ◽  
Author(s):  
Andrey Shavorskiy ◽  
Stefan Neppl ◽  
Daniel S. Slaughter ◽  
James P. Cryan ◽  
Katrin R. Siefermann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document